Publikation: The convex Positivstellensatz in a free algebra
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The main result of this paper establishes the perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set: suppose L is a monic linear pencil in g variables and let DL be its positivity domain
DL := ⋃_(n∊N){X ∈ (Sℝnxn)g | L(X)≥0}.
Then a noncommutative polynomial p is positive semide nite on DL if and only if it has a
weighted sum of squares representation with optimal degree bounds. Namely,
p = ss + ∑_j^finite ƒjLƒj
where s; ƒj are vectors of noncommutative polynomials of degree no greater than deg(p)/2 .
This result contrasts sharply with the commutative setting, where the degrees of s; ƒj are vastly greater than deg(p) and assuming only p nonnegative yields a clean Positivstellensatz so seldom that the cases are noteworthy.
The main ingredient of the proof is an analysis of rank preserving extensions of truncated noncommutative Hankel matrices. It is proved that any such positive de nite matrix Mk of "degree k" has, for each m ≥ 0, a positive semide nite Hankel extension ~Mk+m of degree
k + m and the same rank as Mk
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HELTON, J. William, Igor KLEP, Scott MCCULLOUGH, 2011. The convex Positivstellensatz in a free algebraBibTex
@techreport{Helton2011conve-15285, year={2011}, series={Konstanzer Schriften in Mathematik}, title={The convex Positivstellensatz in a free algebra}, number={288}, author={Helton, J. William and Klep, Igor and McCullough, Scott} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15285"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2011</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15285/2/288%20Helton.pdf"/> <dc:creator>McCullough, Scott</dc:creator> <dcterms:title>The convex Positivstellensatz in a free algebra</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>McCullough, Scott</dc:contributor> <dc:creator>Helton, J. William</dc:creator> <dc:contributor>Klep, Igor</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T10:50:35Z</dcterms:available> <dcterms:abstract xml:lang="eng">The main result of this paper establishes the perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set: suppose L is a monic linear pencil in g variables and let DL be its positivity domain<br /><br />D<sub>L</sub> := ⋃_(n∊N){X ∈ (Sℝ<sup>nxn</sup>)<sup>g</sup> | L(X)≥0}.<br /><br /><br />Then a noncommutative polynomial p is positive semide nite on DL if and only if it has a<br />weighted sum of squares representation with optimal degree bounds. Namely,<br /><br />p = s*s + ∑_j^finite ƒ*<sub>j</sub>Lƒ<sub>j</sub><br /><br /><br />where s; ƒ<sub>j</sub> are vectors of noncommutative polynomials of degree no greater than deg(p)/2 .<br />This result contrasts sharply with the commutative setting, where the degrees of s; ƒ<sub>j</sub> are vastly greater than deg(p) and assuming only p nonnegative yields a clean Positivstellensatz so seldom that the cases are noteworthy.<br /><br />The main ingredient of the proof is an analysis of rank preserving extensions of truncated noncommutative Hankel matrices. It is proved that any such positive de nite matrix M<sub>k</sub> of "degree k" has, for each m ≥ 0, a positive semide nite Hankel extension ~M<sub>k+m</sub> of degree<br />k + m and the same rank as M<sub>k</sub></dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15285"/> <dc:creator>Klep, Igor</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Helton, J. William</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15285/2/288%20Helton.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T10:50:35Z</dc:date> </rdf:Description> </rdf:RDF>