Publikation:

The convex Positivstellensatz in a free algebra

Lade...
Vorschaubild

Dateien

288 Helton.pdf
288 Helton.pdfGröße: 775.13 KBDownloads: 208

Datum

2011

Autor:innen

Helton, J. William
McCullough, Scott

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

The main result of this paper establishes the perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set: suppose L is a monic linear pencil in g variables and let DL be its positivity domain

DL := ⋃_(n∊N){X ∈ (Sℝnxn)g | L(X)≥0}.


Then a noncommutative polynomial p is positive semide nite on DL if and only if it has a
weighted sum of squares representation with optimal degree bounds. Namely,

p = ss + ∑_j^finite ƒjj


where s; ƒj are vectors of noncommutative polynomials of degree no greater than deg(p)/2 .
This result contrasts sharply with the commutative setting, where the degrees of s; ƒj are vastly greater than deg(p) and assuming only p nonnegative yields a clean Positivstellensatz so seldom that the cases are noteworthy.

The main ingredient of the proof is an analysis of rank preserving extensions of truncated noncommutative Hankel matrices. It is proved that any such positive de nite matrix Mk of "degree k" has, for each m ≥ 0, a positive semide nite Hankel extension ~Mk+m of degree
k + m and the same rank as Mk

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Positivstellensatz, at extension, moment problem, rank preserving, noncommutative algebra, free positivity.

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HELTON, J. William, Igor KLEP, Scott MCCULLOUGH, 2011. The convex Positivstellensatz in a free algebra
BibTex
@techreport{Helton2011conve-15285,
  year={2011},
  series={Konstanzer Schriften in Mathematik},
  title={The convex Positivstellensatz in a free algebra},
  number={288},
  author={Helton, J. William and Klep, Igor and McCullough, Scott}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15285">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2011</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15285/2/288%20Helton.pdf"/>
    <dc:creator>McCullough, Scott</dc:creator>
    <dcterms:title>The convex Positivstellensatz in a free algebra</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>McCullough, Scott</dc:contributor>
    <dc:creator>Helton, J. William</dc:creator>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T10:50:35Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">The main result of this paper establishes the perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set: suppose L is a monic linear pencil in g variables and let DL be its positivity domain&lt;br /&gt;&lt;br /&gt;D&lt;sub&gt;L&lt;/sub&gt; := ⋃_(n∊N){X ∈ (Sℝ&lt;sup&gt;nxn&lt;/sup&gt;)&lt;sup&gt;g&lt;/sup&gt; | L(X)≥0}.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Then a noncommutative polynomial p is positive semide nite on DL if and only if it has a&lt;br /&gt;weighted sum of squares representation with optimal degree bounds. Namely,&lt;br /&gt;&lt;br /&gt;p = s*s + ∑_j^finite ƒ*&lt;sub&gt;j&lt;/sub&gt;Lƒ&lt;sub&gt;j&lt;/sub&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;where s; ƒ&lt;sub&gt;j&lt;/sub&gt; are vectors of noncommutative polynomials of degree no greater than deg(p)/2 .&lt;br /&gt;This result contrasts sharply with the commutative setting, where the degrees of s; ƒ&lt;sub&gt;j&lt;/sub&gt; are vastly greater than deg(p) and assuming only p nonnegative yields a clean Positivstellensatz so seldom that the cases are noteworthy.&lt;br /&gt;&lt;br /&gt;The main ingredient of the proof is an analysis of rank preserving extensions of truncated noncommutative Hankel matrices. It is proved that any such positive de nite matrix M&lt;sub&gt;k&lt;/sub&gt; of "degree k" has, for each m ≥ 0, a positive semide nite Hankel extension ~M&lt;sub&gt;k+m&lt;/sub&gt; of degree&lt;br /&gt;k + m and the same rank as M&lt;sub&gt;k&lt;/sub&gt;</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15285"/>
    <dc:creator>Klep, Igor</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Helton, J. William</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15285/2/288%20Helton.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T10:50:35Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen