Testing error-management predictions in forgiveness decisions with cognitive modeling and process-tracing tools
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigated the forgiveness decision as an error-management task and demonstrated how tools from decision science can facilitate testing precise predictions about bias and its cognitive implementation. We combined decision modeling (using a weighting-and-adding model and a lexicographic heuristic) with process-tracing tools that track response times as well as the pattern of information acquisition. Our modeling results indicate that individuals adopted a decision bias commensurate with the relative cost of errors and that they also adjusted their bias after the perceived costs of errors were experimentally manipulated. Even though the 2 decision models were accurate in fitting the decisions (accuracies of around 85%), they were less successful in fitting the process measures. Our process-tracing results do not support either model—response times were in favor of the heuristic, whereas information-acquisition patterns favored the linear model, albeit slightly. Nevertheless, our methodology used to investigate the forgiveness decision can be a seen as a “blueprint” of how the cognitive processes of other error-management tasks can be investigated and how a more detailed mapping of the adapted mind can be achieved.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TAN, Jolene H., Shenghua LUAN, Tita GONZALEZ, Evaldas JABLONSKIS, 2018. Testing error-management predictions in forgiveness decisions with cognitive modeling and process-tracing tools. In: Evolutionary Behavioral Sciences. 2018, 12(3), pp. 206-217. ISSN 2330-2925. eISSN 2330-2933. Available under: doi: 10.1037/ebs0000114BibTex
@article{Tan2018-07Testi-46062, year={2018}, doi={10.1037/ebs0000114}, title={Testing error-management predictions in forgiveness decisions with cognitive modeling and process-tracing tools}, number={3}, volume={12}, issn={2330-2925}, journal={Evolutionary Behavioral Sciences}, pages={206--217}, author={Tan, Jolene H. and Luan, Shenghua and Gonzalez, Tita and Jablonskis, Evaldas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46062"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Gonzalez, Tita</dc:contributor> <dc:contributor>Jablonskis, Evaldas</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46062"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Tan, Jolene H.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Jablonskis, Evaldas</dc:creator> <dc:creator>Luan, Shenghua</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-19T13:42:51Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:abstract xml:lang="eng">We investigated the forgiveness decision as an error-management task and demonstrated how tools from decision science can facilitate testing precise predictions about bias and its cognitive implementation. We combined decision modeling (using a weighting-and-adding model and a lexicographic heuristic) with process-tracing tools that track response times as well as the pattern of information acquisition. Our modeling results indicate that individuals adopted a decision bias commensurate with the relative cost of errors and that they also adjusted their bias after the perceived costs of errors were experimentally manipulated. Even though the 2 decision models were accurate in fitting the decisions (accuracies of around 85%), they were less successful in fitting the process measures. Our process-tracing results do not support either model—response times were in favor of the heuristic, whereas information-acquisition patterns favored the linear model, albeit slightly. Nevertheless, our methodology used to investigate the forgiveness decision can be a seen as a “blueprint” of how the cognitive processes of other error-management tasks can be investigated and how a more detailed mapping of the adapted mind can be achieved.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Gonzalez, Tita</dc:creator> <dc:creator>Tan, Jolene H.</dc:creator> <dcterms:issued>2018-07</dcterms:issued> <dcterms:title>Testing error-management predictions in forgiveness decisions with cognitive modeling and process-tracing tools</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Luan, Shenghua</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-06-19T13:42:51Z</dc:date> </rdf:Description> </rdf:RDF>