Publikation: Part of Speech Based Term Weighting for Information Retrieval
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Automatic language processing tools typically assign to terms so-called weights' corresponding to the contribution of terms to information content. Traditionally, term weights are computed from lexical statistics, e.g., term frequencies. We propose a new type of term weight that is computed from part of speech (POS) n-gram statistics. The proposed POS-based term weight represents how informative a term is in general, based on the POS contexts' in which it generally occurs in language. We suggest five different computations of POS-based term weights by extending existing statistical approximations of term information measures. We apply these POS-based term weights to information retrieval, by integrating them into the model that matches documents to queries. Experiments with two TREC collections and 300 queries, using TF-IDF & BM25 as baselines, show that integrating our POS-based term weights to retrieval always leads to gains (up to +33.7% from the baseline). Additional experiments with a different retrieval model as baseline (Language Model with Dirichlet priors smoothing) and our best performing POS-based term weight, show retrieval gains always and consistently across the whole smoothing range of the baseline.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LIOMA, Christina, Roi BLANCO, 2009. Part of Speech Based Term Weighting for Information Retrieval. In: BOUGHANEM, Mohand, ed., Catherine BERRUT, ed., Josiane MOTHE, ed., Chantal SOULE-DUPUY, ed.. Advances in Information Retrieval. Berlin: Springer, 2009, pp. 412-423. Lecture Notes in Computer Science. 5478. ISBN 978-3-642-00957-0. Available under: doi: 10.1007/978-3-642-00958-7_37BibTex
@inproceedings{Lioma2009Speec-2664, year={2009}, doi={10.1007/978-3-642-00958-7_37}, title={Part of Speech Based Term Weighting for Information Retrieval}, number={5478}, isbn={978-3-642-00957-0}, publisher={Springer}, address={Berlin}, series={Lecture Notes in Computer Science}, booktitle={Advances in Information Retrieval}, pages={412--423}, editor={Boughanem, Mohand and Berrut, Catherine and Mothe, Josiane and Soule-Dupuy, Chantal}, author={Lioma, Christina and Blanco, Roi} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2664"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:contributor>Lioma, Christina</dc:contributor> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Blanco, Roi</dc:contributor> <dcterms:abstract xml:lang="eng">Automatic language processing tools typically assign to terms so-called weights' corresponding to the contribution of terms to information content. Traditionally, term weights are computed from lexical statistics, e.g., term frequencies. We propose a new type of term weight that is computed from part of speech (POS) n-gram statistics. The proposed POS-based term weight represents how informative a term is in general, based on the POS contexts' in which it generally occurs in language. We suggest five different computations of POS-based term weights by extending existing statistical approximations of term information measures. We apply these POS-based term weights to information retrieval, by integrating them into the model that matches documents to queries. Experiments with two TREC collections and 300 queries, using TF-IDF & BM25 as baselines, show that integrating our POS-based term weights to retrieval always leads to gains (up to +33.7% from the baseline). Additional experiments with a different retrieval model as baseline (Language Model with Dirichlet priors smoothing) and our best performing POS-based term weight, show retrieval gains always and consistently across the whole smoothing range of the baseline.</dcterms:abstract> <dcterms:title>Part of Speech Based Term Weighting for Information Retrieval</dcterms:title> <dcterms:issued>2009</dcterms:issued> <dc:creator>Blanco, Roi</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Publ. in: Advances in information retrieval: 31th European Conference on IR Research, ECIR 2009, Toulouse, France, April 6 - 9, 2009; proceedings / Mohand Boughanem ... (eds.). (= LNCS ; 5478) Berlin: Springer, 2009, pp. 412-423</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2664"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Lioma, Christina</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T09:58:43Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T09:58:43Z</dcterms:available> </rdf:Description> </rdf:RDF>