Publikation:

Part of Speech Based Term Weighting for Information Retrieval

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Autor:innen

Lioma, Christina
Blanco, Roi

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BOUGHANEM, Mohand, ed., Catherine BERRUT, ed., Josiane MOTHE, ed., Chantal SOULE-DUPUY, ed.. Advances in Information Retrieval. Berlin: Springer, 2009, pp. 412-423. Lecture Notes in Computer Science. 5478. ISBN 978-3-642-00957-0. Available under: doi: 10.1007/978-3-642-00958-7_37

Zusammenfassung

Automatic language processing tools typically assign to terms so-called weights' corresponding to the contribution of terms to information content. Traditionally, term weights are computed from lexical statistics, e.g., term frequencies. We propose a new type of term weight that is computed from part of speech (POS) n-gram statistics. The proposed POS-based term weight represents how informative a term is in general, based on the POS contexts' in which it generally occurs in language. We suggest five different computations of POS-based term weights by extending existing statistical approximations of term information measures. We apply these POS-based term weights to information retrieval, by integrating them into the model that matches documents to queries. Experiments with two TREC collections and 300 queries, using TF-IDF & BM25 as baselines, show that integrating our POS-based term weights to retrieval always leads to gains (up to +33.7% from the baseline). Additional experiments with a different retrieval model as baseline (Language Model with Dirichlet priors smoothing) and our best performing POS-based term weight, show retrieval gains always and consistently across the whole smoothing range of the baseline.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
400 Sprachwissenschaft, Linguistik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIOMA, Christina, Roi BLANCO, 2009. Part of Speech Based Term Weighting for Information Retrieval. In: BOUGHANEM, Mohand, ed., Catherine BERRUT, ed., Josiane MOTHE, ed., Chantal SOULE-DUPUY, ed.. Advances in Information Retrieval. Berlin: Springer, 2009, pp. 412-423. Lecture Notes in Computer Science. 5478. ISBN 978-3-642-00957-0. Available under: doi: 10.1007/978-3-642-00958-7_37
BibTex
@inproceedings{Lioma2009Speec-2664,
  year={2009},
  doi={10.1007/978-3-642-00958-7_37},
  title={Part of Speech Based Term Weighting for Information Retrieval},
  number={5478},
  isbn={978-3-642-00957-0},
  publisher={Springer},
  address={Berlin},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Information Retrieval},
  pages={412--423},
  editor={Boughanem, Mohand and Berrut, Catherine and Mothe, Josiane and Soule-Dupuy, Chantal},
  author={Lioma, Christina and Blanco, Roi}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/2664">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:contributor>Lioma, Christina</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Blanco, Roi</dc:contributor>
    <dcterms:abstract xml:lang="eng">Automatic language processing tools typically assign to terms so-called weights' corresponding to the contribution of terms to information content. Traditionally, term weights are computed from lexical statistics, e.g., term frequencies. We propose a new type of term weight that is computed from part of speech (POS) n-gram statistics. The proposed POS-based term weight represents how informative a term is in general, based on the POS contexts' in which it generally occurs in language. We suggest five different computations of POS-based term weights by extending existing statistical approximations of term information measures. We apply these POS-based term weights to information retrieval, by integrating them into the model that matches documents to queries. Experiments with two TREC collections and 300 queries, using TF-IDF &amp; BM25 as baselines, show that integrating our POS-based term weights to retrieval always leads to gains (up to +33.7% from the baseline). Additional experiments with a different retrieval model as baseline (Language Model with Dirichlet priors smoothing) and our best performing POS-based term weight, show retrieval gains always and consistently across the whole smoothing range of the baseline.</dcterms:abstract>
    <dcterms:title>Part of Speech Based Term Weighting for Information Retrieval</dcterms:title>
    <dcterms:issued>2009</dcterms:issued>
    <dc:creator>Blanco, Roi</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Publ. in: Advances in information retrieval: 31th European Conference on IR Research, ECIR 2009, Toulouse, France, April 6 - 9, 2009; proceedings / Mohand Boughanem ... (eds.). (= LNCS ; 5478) Berlin: Springer, 2009, pp. 412-423</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/2664"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:creator>Lioma, Christina</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T09:58:43Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T09:58:43Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen