Publikation:

Co-adaptive visual data analysis and guidance processes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computers & Graphics. Elsevier. 2021, 100, pp. 93-105. ISSN 0097-8493. eISSN 1873-7684. Available under: doi: 10.1016/j.cag.2021.06.016

Zusammenfassung

Mixed-initiative visual data analysis processes are characterized by the co-adaptation of users and systems over time. As the analysis progresses, both actors – users and systems – gather information, update their analysis behavior, and work on different tasks towards their respective goals. In this paper, we contribute a multigranular model of co-adaptive visual analysis that is centered around incremental learning goals derived from a hierarchical taxonomy of learning goals from pedagogy. Our model captures how both actors adapt their data-, task-, and user/system-models over time. We characterize interaction patterns in terms of the dynamics of learning and teaching that drive adaptation. To demonstrate our model’s applicability, we outline aspects of co-adaptation in related models of visual analytics and highlight co-adaptation in existing applications. We further postulate a set of expectations towards adaptation in mixed-initiative processes and identify open research questions and opportunities for future work in co-adaptation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Co-Adaptive Analysis Process, Guidance, Visual Analytics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPERRLE, Fabian, Astrik Veronika JEITLER, Jürgen BERNARD, Daniel A. KEIM, Mennatallah EL-ASSADY, 2021. Co-adaptive visual data analysis and guidance processes. In: Computers & Graphics. Elsevier. 2021, 100, pp. 93-105. ISSN 0097-8493. eISSN 1873-7684. Available under: doi: 10.1016/j.cag.2021.06.016
BibTex
@article{Sperrle2021Coada-54358,
  year={2021},
  doi={10.1016/j.cag.2021.06.016},
  title={Co-adaptive visual data analysis and guidance processes},
  volume={100},
  issn={0097-8493},
  journal={Computers & Graphics},
  pages={93--105},
  author={Sperrle, Fabian and Jeitler, Astrik Veronika and Bernard, Jürgen and Keim, Daniel A. and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54358">
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-20T12:36:03Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54358"/>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-20T12:36:03Z</dc:date>
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dcterms:title>Co-adaptive visual data analysis and guidance processes</dcterms:title>
    <dc:creator>Jeitler, Astrik Veronika</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Jeitler, Astrik Veronika</dc:contributor>
    <dcterms:abstract xml:lang="eng">Mixed-initiative visual data analysis processes are characterized by the co-adaptation of users and systems over time. As the analysis progresses, both actors – users and systems – gather information, update their analysis behavior, and work on different tasks towards their respective goals. In this paper, we contribute a multigranular model of co-adaptive visual analysis that is centered around incremental learning goals derived from a hierarchical taxonomy of learning goals from pedagogy. Our model captures how both actors adapt their data-, task-, and user/system-models over time. We characterize interaction patterns in terms of the dynamics of learning and teaching that drive adaptation. To demonstrate our model’s applicability, we outline aspects of co-adaptation in related models of visual analytics and highlight co-adaptation in existing applications. We further postulate a set of expectations towards adaptation in mixed-initiative processes and identify open research questions and opportunities for future work in co-adaptation.</dcterms:abstract>
    <dc:creator>Sperrle, Fabian</dc:creator>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen