Publikation:

Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data

Lade...
Vorschaubild

Dateien

Bahl_2-49mjifjo9us20.pdf
Bahl_2-49mjifjo9us20.pdfGröße: 1.52 MBDownloads: 154

Datum

2012

Autor:innen

Stemmler, Martin B.
Herz, Andreas V. M.
Roth, Arnd

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Neuroscience Methods. Elsevier. 2012, 210(1), pp. 22-34. ISSN 0165-0270. eISSN 1872-678X. Available under: doi: 10.1016/j.jneumeth.2012.04.006

Zusammenfassung

The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions - with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BAHL, Armin, Martin B. STEMMLER, Andreas V. M. HERZ, Arnd ROTH, 2012. Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. In: Journal of Neuroscience Methods. Elsevier. 2012, 210(1), pp. 22-34. ISSN 0165-0270. eISSN 1872-678X. Available under: doi: 10.1016/j.jneumeth.2012.04.006
BibTex
@article{Bahl2012-09-15Autom-53686,
  year={2012},
  doi={10.1016/j.jneumeth.2012.04.006},
  title={Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data},
  number={1},
  volume={210},
  issn={0165-0270},
  journal={Journal of Neuroscience Methods},
  pages={22--34},
  author={Bahl, Armin and Stemmler, Martin B. and Herz, Andreas V. M. and Roth, Arnd}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53686">
    <dc:rights>Attribution 3.0 Unported</dc:rights>
    <dc:creator>Roth, Arnd</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53686/1/Bahl_2-49mjifjo9us20.pdf"/>
    <dc:creator>Bahl, Armin</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-14T12:18:55Z</dc:date>
    <dcterms:title>Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Stemmler, Martin B.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Stemmler, Martin B.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
    <dc:creator>Herz, Andreas V. M.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53686/1/Bahl_2-49mjifjo9us20.pdf"/>
    <dc:contributor>Roth, Arnd</dc:contributor>
    <dcterms:abstract xml:lang="eng">The construction of compartmental models of neurons involves tuning a set of parameters to make the model neuron behave as realistically as possible. While the parameter space of single-compartment models or other simple models can be exhaustively searched, the introduction of dendritic geometry causes the number of parameters to balloon. As parameter tuning is a daunting and time-consuming task when performed manually, reliable methods for automatically optimizing compartmental models are desperately needed, as only optimized models can capture the behavior of real neurons. Here we present a three-step strategy to automatically build reduced models of layer 5 pyramidal neurons that closely reproduce experimental data. First, we reduce the pattern of dendritic branches of a detailed model to a set of equivalent primary dendrites. Second, the ion channel densities are estimated using a multi-objective optimization strategy to fit the voltage trace recorded under two conditions - with and without the apical dendrite occluded by pinching. Finally, we tune dendritic calcium channel parameters to model the initiation of dendritic calcium spikes and the coupling between soma and dendrite. More generally, this new method can be applied to construct families of models of different neuron types, with applications ranging from the study of information processing in single neurons to realistic simulations of large-scale network dynamics.</dcterms:abstract>
    <dcterms:issued>2012-09-15</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-14T12:18:55Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53686"/>
    <dc:contributor>Bahl, Armin</dc:contributor>
    <dc:contributor>Herz, Andreas V. M.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen