Publikation: Design of experiment characterization of microneedle fabrication processes based on dry silicon etching
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HELD, Jochen, João GASPAR, Patrick RUTHER, Matthias HAGNER, Andreas CISMAK, Andreas HEILMANN, Oliver PAUL, 2010. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching. In: Journal of Micromechanics and Microengineering. Institute of Physics Publishing (IOP). 2010, 20(2), 025024. ISSN 0960-1317. eISSN 1361-6439. Available under: doi: 10.1088/0960-1317/20/2/025024BibTex
@article{Held2010-02-01Desig-52712, year={2010}, doi={10.1088/0960-1317/20/2/025024}, title={Design of experiment characterization of microneedle fabrication processes based on dry silicon etching}, number={2}, volume={20}, issn={0960-1317}, journal={Journal of Micromechanics and Microengineering}, author={Held, Jochen and Gaspar, João and Ruther, Patrick and Hagner, Matthias and Cismak, Andreas and Heilmann, Andreas and Paul, Oliver}, note={Article Number: 025024} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52712"> <dc:contributor>Ruther, Patrick</dc:contributor> <dc:contributor>Gaspar, João</dc:contributor> <dc:creator>Heilmann, Andreas</dc:creator> <dc:creator>Hagner, Matthias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2010-02-01</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Cismak, Andreas</dc:creator> <dc:contributor>Cismak, Andreas</dc:contributor> <dc:creator>Held, Jochen</dc:creator> <dc:contributor>Paul, Oliver</dc:contributor> <dc:contributor>Hagner, Matthias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-03T13:41:49Z</dcterms:available> <dc:contributor>Heilmann, Andreas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Paul, Oliver</dc:creator> <dc:contributor>Held, Jochen</dc:contributor> <dcterms:title>Design of experiment characterization of microneedle fabrication processes based on dry silicon etching</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-03T13:41:49Z</dc:date> <dcterms:abstract xml:lang="eng">This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Gaspar, João</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52712"/> <dc:creator>Ruther, Patrick</dc:creator> </rdf:Description> </rdf:RDF>