Publikation:

Estimating the robustness and uncertainty of animal social networks using different observational methods

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Animal Behaviour. 2018, 141, pp. 29-44. ISSN 0003-3472. eISSN 1095-8282. Available under: doi: 10.1016/j.anbehav.2018.04.012

Zusammenfassung

Social network analysis is quickly becoming an estab lished framework to study the structure of animal social systems. To explore the social network of a population, observers must capture data on the in- teractions or associations between individuals. Sampling decisio ns significantly impact the outcome of data collection, notably the amount of data available from which to construct social networks. However, little is known about how different sampling methods, and more generally the extent of sampling effort, impact the robustness of social network analyses. Here, we generate proximity networks from data obtained via nearly continuous GPS tracking of members of a wild baboon troop (Papio anubis). These data allow us to produce networks based on complete observations of interindividual distances between group members. We then mimic several widely used focal animal sampling and group scanning methods by subsampling the complete data set to simulate observational data comparable to that produced by human observers. We explore how sampling effort, sampling methods, network definitions and levels and types of sampling error affect the correlation between the estimated and complete networks. Our results suggest that for some scenarios, even low levels of sampling effort (5 e 10 samples/individual) can provide the same information as high sampling effort (>64 samples/individual). However, we find that insufficient data collected across all potentially interacting individuals, certain network definitions (how edge weights and distance thresholds are calculated) and misidentifications of individuals in the network can generate spurious network structure with little or no correlation to the underlying or ‘real’ social structure. Our results suggest that data collection methods should be designed to maximize the number of potential interactions (edges) recorded for each observation. We discuss the relative trade-offs be- tween maximizing the amount of data collected across as many individuals as possible and the potential for erroneous observations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

animal social network; focal sampling; observational sampling method; proximity network; scan sampling; social organization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DAVIS, Grace, Margaret C. CROFOOT, Damien R. FARINE, 2018. Estimating the robustness and uncertainty of animal social networks using different observational methods. In: Animal Behaviour. 2018, 141, pp. 29-44. ISSN 0003-3472. eISSN 1095-8282. Available under: doi: 10.1016/j.anbehav.2018.04.012
BibTex
@article{Davis2018Estim-42834,
  year={2018},
  doi={10.1016/j.anbehav.2018.04.012},
  title={Estimating the robustness and uncertainty of animal social networks using different observational methods},
  volume={141},
  issn={0003-3472},
  journal={Animal Behaviour},
  pages={29--44},
  author={Davis, Grace and Crofoot, Margaret C. and Farine, Damien R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42834">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Crofoot, Margaret C.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-11T08:53:52Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Social network analysis is quickly becoming an estab lished framework to study the structure of animal social systems. To explore the social network of a population, observers must capture data on the in- teractions or associations between individuals. Sampling decisio ns significantly impact the outcome of data collection, notably the amount of data available from which to construct social networks. However, little is known about how different sampling methods, and more generally the extent of sampling effort, impact the robustness of social network analyses. Here, we generate proximity networks from data obtained via nearly continuous GPS tracking of members of a wild baboon troop (Papio anubis). These data allow us to produce networks based on complete observations of interindividual distances between group members. We then mimic several widely used focal animal sampling and group scanning methods by subsampling the complete data set to simulate observational data comparable to that produced by human observers. We explore how sampling effort, sampling methods, network definitions and levels and types of sampling error affect the correlation between the estimated and complete networks. Our results suggest that for some scenarios, even low levels of sampling effort (5 e 10 samples/individual) can provide the same information as high sampling effort (&gt;64 samples/individual). However, we find that insufficient data collected across all potentially interacting individuals, certain network definitions (how edge weights and distance thresholds are calculated) and misidentifications of individuals in the network can generate spurious network structure with little or no correlation to the underlying or ‘real’ social structure. Our results suggest that data collection methods should be designed to maximize the number of potential interactions (edges) recorded for each observation. We discuss the relative trade-offs be- tween maximizing the amount of data collected across as many individuals as possible and the potential for erroneous observations.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42834"/>
    <dc:creator>Farine, Damien R.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-11T08:53:52Z</dcterms:available>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <dc:creator>Crofoot, Margaret C.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Davis, Grace</dc:creator>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Davis, Grace</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Estimating the robustness and uncertainty of animal social networks using different observational methods</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen