Publikation: Magnetic nutation : Transient separation of magnetization from its angular momentum
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): TRR 173–268565370, B11
Deutsche Forschungsgemeinschaft (DFG): TRR 173–268565370, B03
Deutsche Forschungsgemeinschaft (DFG): 318592081
Deutsche Forschungsgemeinschaft (DFG): 425217212-SFB 1432
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
For nearly 90 years, precession and relaxation processes have been thought to dominate the magnetization dynamics. Only recently has it been considered that, on short time scales, an inertia-driven magnetization dynamics should become relevant, leading to additional nutation of the magnetization vector. Here, we trigger magnetic nutation via a sudden excitation of a thin Ni80Fe20 (Permalloy) film with an ultrashort optical pulse, that leads to an abrupt tilting of the effective field acting on the magnetic moments, separating the dynamics of the magnetization from that of its angular momentum. We investigate the resulting magnetization dynamics in the inertial regime experimentally by the time-resolved magneto-optical Kerr effect. We find a characteristic oscillation in the Kerr signal in the range ∼0.1 THz superimposed on the precessional oscillations with GHz frequencies. By comparison with atomistic spin dynamics simulations, we demonstrate that this observation cannot be explained by the well-known Landau-Lifshitz-Gilbert equation of motion but can be attributed to inertial contributions leading to nutation of the magnetization vector around its angular momentum. Hence, an optical and nonresonant excitation of inertial magnetization dynamics can trigger and control different magnetic processes, ranging from demagnetization via nutation to precession in a single device. These findings will have profound implications for the understanding of ultrafast spin dynamics and magnetization switching.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DE, Anulekha, Julius SCHLEGEL, Akira LENTFERT, Laura SCHEUER, Benjamin STADTMÜLLER, Philipp PIRRO, Georg VON FREYMANN, Ulrich NOWAK, Martin AESCHLIMANN, 2025. Magnetic nutation : Transient separation of magnetization from its angular momentum. In: Physical Review B. American Physical Society (APS). 2025, 111(1), 014432. ISSN 2469-9950. eISSN 2469-9969. Verfügbar unter: doi: 10.1103/physrevb.111.014432BibTex
@article{De2025-01-23Magne-72099, title={Magnetic nutation : Transient separation of magnetization from its angular momentum}, year={2025}, doi={10.1103/physrevb.111.014432}, number={1}, volume={111}, issn={2469-9950}, journal={Physical Review B}, author={De, Anulekha and Schlegel, Julius and Lentfert, Akira and Scheuer, Laura and Stadtmüller, Benjamin and Pirro, Philipp and von Freymann, Georg and Nowak, Ulrich and Aeschlimann, Martin}, note={Article Number: 014432} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72099"> <dc:creator>Stadtmüller, Benjamin</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72099/1/De_2-4hx5l04qg7w19.pdf"/> <dcterms:title>Magnetic nutation : Transient separation of magnetization from its angular momentum</dcterms:title> <dc:contributor>Schlegel, Julius</dc:contributor> <dc:creator>Pirro, Philipp</dc:creator> <dc:creator>De, Anulekha</dc:creator> <dcterms:issued>2025-01-23</dcterms:issued> <dc:creator>Lentfert, Akira</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Aeschlimann, Martin</dc:contributor> <dc:contributor>De, Anulekha</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>von Freymann, Georg</dc:creator> <dc:contributor>Scheuer, Laura</dc:contributor> <dc:creator>Nowak, Ulrich</dc:creator> <dcterms:abstract>For nearly 90 years, precession and relaxation processes have been thought to dominate the magnetization dynamics. Only recently has it been considered that, on short time scales, an inertia-driven magnetization dynamics should become relevant, leading to additional nutation of the magnetization vector. Here, we trigger magnetic nutation via a sudden excitation of a thin Ni<sub>80</sub>Fe<sub>20</sub> (Permalloy) film with an ultrashort optical pulse, that leads to an abrupt tilting of the effective field acting on the magnetic moments, separating the dynamics of the magnetization from that of its angular momentum. We investigate the resulting magnetization dynamics in the inertial regime experimentally by the time-resolved magneto-optical Kerr effect. We find a characteristic oscillation in the Kerr signal in the range ∼0.1 THz superimposed on the precessional oscillations with GHz frequencies. By comparison with atomistic spin dynamics simulations, we demonstrate that this observation cannot be explained by the well-known Landau-Lifshitz-Gilbert equation of motion but can be attributed to inertial contributions leading to nutation of the magnetization vector around its angular momentum. Hence, an optical and nonresonant excitation of inertial magnetization dynamics can trigger and control different magnetic processes, ranging from demagnetization via nutation to precession in a single device. These findings will have profound implications for the understanding of ultrafast spin dynamics and magnetization switching.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72099/1/De_2-4hx5l04qg7w19.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-30T09:23:47Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-30T09:23:47Z</dcterms:available> <dc:creator>Schlegel, Julius</dc:creator> <dc:contributor>Lentfert, Akira</dc:contributor> <dc:creator>Scheuer, Laura</dc:creator> <dc:contributor>Stadtmüller, Benjamin</dc:contributor> <dc:contributor>Pirro, Philipp</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>von Freymann, Georg</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72099"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Nowak, Ulrich</dc:contributor> <dc:creator>Aeschlimann, Martin</dc:creator> </rdf:Description> </rdf:RDF>