Publikation:

"Big Data" : Big Gaps of Knowledge in the Field of Internet Science

Lade...
Vorschaubild

Dateien

Snijders_286475.pdf
Snijders_286475.pdfGröße: 70.63 KBDownloads: 10416

Datum

2012

Autor:innen

Snijders, Chris
Matzat, Uwe

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Internet Science. 2012, 7(1), pp. 1-5. eISSN 1662-5544

Zusammenfassung

Research on so-called 'Big Data' has received a considerable momentum and is expected to grow in the future. One very interesting stream of research on Big Data analyzes online networks. Many online networks are known to have some typical macro-characteristics, such as 'small world' properties. Much less is known about underlying micro-processes leading to these properties. The models used by Big Data researchers usually are inspired by mathematical ease of exposition. We propose to follow in addition a different strategy that leads to knowledge about micro-processes that match with actual online behavior. This knowledge can then be used for the selection of mathematically-tractable models of online network formation and evolution. Insight from social and behavioral research is needed for pursuing this strategy of knowledge generation about micro-processes. Accordingly, our proposal points to a unique role that social scientists could play in Big Data research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SNIJDERS, Chris, Uwe MATZAT, Ulf-Dietrich REIPS, 2012. "Big Data" : Big Gaps of Knowledge in the Field of Internet Science. In: International Journal of Internet Science. 2012, 7(1), pp. 1-5. eISSN 1662-5544
BibTex
@article{Snijders2012Knowl-28647,
  year={2012},
  title={"Big Data" : Big Gaps of Knowledge in the Field of Internet Science},
  number={1},
  volume={7},
  journal={International Journal of Internet Science},
  pages={1--5},
  author={Snijders, Chris and Matzat, Uwe and Reips, Ulf-Dietrich}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28647">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Matzat, Uwe</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>"Big Data" : Big Gaps of Knowledge in the Field of Internet Science</dcterms:title>
    <dc:creator>Reips, Ulf-Dietrich</dc:creator>
    <dc:contributor>Snijders, Chris</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-08-13T15:01:06Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28647/2/Snijders_286475.pdf"/>
    <dc:creator>Snijders, Chris</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Matzat, Uwe</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/28647/2/Snijders_286475.pdf"/>
    <dcterms:bibliographicCitation>International Journal of Internet Science ; 7 (2012), 1. - S. 1-5</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/28647"/>
    <dcterms:abstract xml:lang="eng">Research on so-called 'Big Data' has received a considerable momentum and is expected to grow in the future. One very interesting stream of research on Big Data analyzes online networks. Many online networks are known to have some typical macro-characteristics, such as 'small world' properties. Much less is known about underlying micro-processes leading to these properties. The models used by Big Data researchers usually are inspired by mathematical ease of exposition. We propose to follow in addition a different strategy that leads to knowledge about micro-processes that match with actual online behavior. This knowledge can then be used for the selection of mathematically-tractable models of online network formation and evolution. Insight from social and behavioral research is needed for pursuing this strategy of knowledge generation about micro-processes. Accordingly, our proposal points to a unique role that social scientists could play in Big Data research.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2012</dcterms:issued>
    <dc:contributor>Reips, Ulf-Dietrich</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-08-13T15:01:06Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen