Considering cross-cultural context in the automatic recognition of emotions

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Machine Learning and Cybernetics. 2015, 6(1), pp. 119-127. ISSN 1868-8071. eISSN 1868-808X. Available under: doi: 10.1007/s13042-013-0192-2
Zusammenfassung

Automatic recognition of emotions remains an ongoing challenge and much effort is being invested towards developing a system to solve this problem. Although several systems have been proposed, there is still none that considers the cultural context for emotion recognition. It remains unclear whether emotions are universal or culturally specific. A study on how culture influences the recognition of emotions is presented. For this purpose, a multicultural corpus for cross-cultural emotion analysis is constructed. Subjects from three different cultures—American, Asian and European—are recruited. The corpus is segmented and annotated. To avoid language artifacts, the emotion recognition model considers facial expressions, head movements, body motions and dimensional emotions. Three training and testing paradigms are carried out to compare cultural effects: intra-cultural, cross-cultural and multicultural emotion recognition. Intra-cultural and multicultural emotion recognition paradigms raised the best recognition results; cross-cultural emotion recognition rates were lower. These results suggest that emotion expression varies by culture, representing a hint of emotion specificity.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Affect, Culture, Universality, Specificity, Emotional corpus
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690QUIRÓS-RAMÍREZ, M. Alejandra, Takehisa ONISAWA, 2015. Considering cross-cultural context in the automatic recognition of emotions. In: International Journal of Machine Learning and Cybernetics. 2015, 6(1), pp. 119-127. ISSN 1868-8071. eISSN 1868-808X. Available under: doi: 10.1007/s13042-013-0192-2
BibTex
@article{QuirosRamirez2015-02Consi-44415,
  year={2015},
  doi={10.1007/s13042-013-0192-2},
  title={Considering cross-cultural context in the automatic recognition of emotions},
  number={1},
  volume={6},
  issn={1868-8071},
  journal={International Journal of Machine Learning and Cybernetics},
  pages={119--127},
  author={Quirós-Ramírez, M. Alejandra and Onisawa, Takehisa}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44415">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-07T09:12:14Z</dc:date>
    <dcterms:issued>2015-02</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-07T09:12:14Z</dcterms:available>
    <dcterms:title>Considering cross-cultural context in the automatic recognition of emotions</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44415"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Onisawa, Takehisa</dc:contributor>
    <dc:creator>Quirós-Ramírez, M. Alejandra</dc:creator>
    <dc:creator>Onisawa, Takehisa</dc:creator>
    <dcterms:abstract xml:lang="eng">Automatic recognition of emotions remains an ongoing challenge and much effort is being invested towards developing a system to solve this problem. Although several systems have been proposed, there is still none that considers the cultural context for emotion recognition. It remains unclear whether emotions are universal or culturally specific. A study on how culture influences the recognition of emotions is presented. For this purpose, a multicultural corpus for cross-cultural emotion analysis is constructed. Subjects from three different cultures—American, Asian and European—are recruited. The corpus is segmented and annotated. To avoid language artifacts, the emotion recognition model considers facial expressions, head movements, body motions and dimensional emotions. Three training and testing paradigms are carried out to compare cultural effects: intra-cultural, cross-cultural and multicultural emotion recognition. Intra-cultural and multicultural emotion recognition paradigms raised the best recognition results; cross-cultural emotion recognition rates were lower. These results suggest that emotion expression varies by culture, representing a hint of emotion specificity.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Quirós-Ramírez, M. Alejandra</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt