Publikation:

How Much Trait Variance Is Captured by Measures of Academic State Emotions? : A Latent State-Trait Analysis

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

European Journal of Psychological Assessment. 2017, 33(4), pp. 239-255. ISSN 1015-5759. eISSN 2151-2426. Available under: doi: 10.1027/1015-5759/a000416

Zusammenfassung

Although the popularity of research on academic emotions is on the rise, little is known about the extent to which these emotional experiences are due to stable (trait) versus situational (state) influences. In the present paper, we applied the latent state-trait approach (LST) to multiple state assessments of five frequently experienced discrete academic emotions (enjoyment, pride, anger, anxiety, boredom) to disentangle their trait versus state variance components. We had two main aims: (1) to identify the differential contributions of the person-specific (trait) and situation-specific (state) variance components of discrete academic emotions, and (2) to examine the relations between different discrete academic emotions with regard to their latent trait and latent state residual components. Eight hundred thirty-seven German students participated in this diary study that lasted 2–3 weeks. During this time, students responded to short (two items per emotion) questionnaires asking about their lesson-specific state emotions in mathematics. The results revealed that for each academic emotion the trait variance and state residual components were of about equal size. Further, while differently valenced (positive vs. negative) latent trait components of students’ emotions were mostly uncorrelated (with the exception of boredom), differently valenced latent state residual components of students’ emotions were negatively correlated. We discuss our findings in relation to the structure of current affect and highlight their implications for classroom practices.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
370 Erziehung, Schul- und Bildungswesen

Schlagwörter

academic emotions, state emotions, trait emotions, latent state-trait approach

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690NETT, Ulrike, Madeleine BIEG, Melanie KELLER, 2017. How Much Trait Variance Is Captured by Measures of Academic State Emotions? : A Latent State-Trait Analysis. In: European Journal of Psychological Assessment. 2017, 33(4), pp. 239-255. ISSN 1015-5759. eISSN 2151-2426. Available under: doi: 10.1027/1015-5759/a000416
BibTex
@article{Nett2017Trait-40589,
  year={2017},
  doi={10.1027/1015-5759/a000416},
  title={How Much Trait Variance Is Captured by Measures of Academic State Emotions? : A Latent State-Trait Analysis},
  number={4},
  volume={33},
  issn={1015-5759},
  journal={European Journal of Psychological Assessment},
  pages={239--255},
  author={Nett, Ulrike and Bieg, Madeleine and Keller, Melanie}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40589">
    <dc:creator>Nett, Ulrike</dc:creator>
    <dc:creator>Bieg, Madeleine</dc:creator>
    <dc:creator>Keller, Melanie</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Although the popularity of research on academic emotions is on the rise, little is known about the extent to which these emotional experiences are due to stable (trait) versus situational (state) influences. In the present paper, we applied the latent state-trait approach (LST) to multiple state assessments of five frequently experienced discrete academic emotions (enjoyment, pride, anger, anxiety, boredom) to disentangle their trait versus state variance components. We had two main aims: (1) to identify the differential contributions of the person-specific (trait) and situation-specific (state) variance components of discrete academic emotions, and (2) to examine the relations between different discrete academic emotions with regard to their latent trait and latent state residual components. Eight hundred thirty-seven German students participated in this diary study that lasted 2–3 weeks. During this time, students responded to short (two items per emotion) questionnaires asking about their lesson-specific state emotions in mathematics. The results revealed that for each academic emotion the trait variance and state residual components were of about equal size. Further, while differently valenced (positive vs. negative) latent trait components of students’ emotions were mostly uncorrelated (with the exception of boredom), differently valenced latent state residual components of students’ emotions were negatively correlated. We discuss our findings in relation to the structure of current affect and highlight their implications for classroom practices.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-13T09:31:42Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Bieg, Madeleine</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-13T09:31:42Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40589"/>
    <dcterms:title>How Much Trait Variance Is Captured by Measures of Academic State Emotions? : A Latent State-Trait Analysis</dcterms:title>
    <dc:contributor>Nett, Ulrike</dc:contributor>
    <dc:contributor>Keller, Melanie</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen