Publikation: Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The perfomance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAUK, Olaf, Andreas KEIL, Thomas ELBERT, Matthias M. MÜLLER, 2002. Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG. In: Journal of Neuroscience Methods. 2002, 113(2), pp. 111-122. ISSN 0165-0270. eISSN 1872-678X. Available under: doi: 10.1016/S0165-0270(01)00484-8BibTex
@article{Hauk2002Compa-10654, year={2002}, doi={10.1016/S0165-0270(01)00484-8}, title={Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG}, number={2}, volume={113}, issn={0165-0270}, journal={Journal of Neuroscience Methods}, pages={111--122}, author={Hauk, Olaf and Keil, Andreas and Elbert, Thomas and Müller, Matthias M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/10654"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10654/1/Hauk_et_al_Neurosc_Methods_02.pdf.pdf"/> <dcterms:issued>2002</dcterms:issued> <dc:creator>Hauk, Olaf</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:20:30Z</dc:date> <dcterms:title>Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/10654"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Keil, Andreas</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Elbert, Thomas</dc:creator> <dc:contributor>Elbert, Thomas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10654/1/Hauk_et_al_Neurosc_Methods_02.pdf.pdf"/> <dc:creator>Müller, Matthias M.</dc:creator> <dcterms:bibliographicCitation>First publ. in: Journal of Neuroscience Methods 113 (2002) 111-122</dcterms:bibliographicCitation> <dc:contributor>Müller, Matthias M.</dc:contributor> <dcterms:abstract xml:lang="eng">We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The perfomance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:20:30Z</dcterms:available> <dc:creator>Keil, Andreas</dc:creator> <dc:contributor>Hauk, Olaf</dc:contributor> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>