Publikation: Techniques for precision-based visual analysis of projected data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The analysis of high-dimensional data is an important, yet inherently difficult problem. Projection techniques such as Principal Component Analysis, Multi-dimensional Scaling and Self-Organizing Map can be used to map high-dimensional data to 2D display space. However, projections typically incur a loss in information. Often, uncertainty exists regarding the precision of the projection as compared with its original data characteristics. While the output quality of these projection techniques can be discussed in terms of aggregate numeric error values, visualization is often helpful for better understanding the projection results. We address the visual assessment of projection precision by an approach integrating an appropriately designed projection precision measure directly into the projection visualization. To this end, a flexible projection precision measure is defined that allows the user to balance the degree of locality at which the measure is evaluated. Several visual mappings are designed for integrating the precision measure into the projection visualization at various levels of abstraction. The techniques are implemented in an interactive system, including methods supporting the user in finding appropriate settings of relevant parameters. We demonstrate the usefulness of the approach for visual analysis of classified and unclassified high-dimensional data sets. We show how our interactive precision quality visualization system helps to examine the preservation of original data properties in projected space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHRECK, Tobias, Tatiana von LANDESBERGER, Sebastian BREMM, 2010. Techniques for precision-based visual analysis of projected data. In: Information Visualization. 2010, 9(3), pp. 181-193. ISSN 1473-8716. Available under: doi: 10.1057/ivs.2010.2BibTex
@article{Schreck2010Techn-17407, year={2010}, doi={10.1057/ivs.2010.2}, title={Techniques for precision-based visual analysis of projected data}, number={3}, volume={9}, issn={1473-8716}, journal={Information Visualization}, pages={181--193}, author={Schreck, Tobias and Landesberger, Tatiana von and Bremm, Sebastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17407"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:39:48Z</dc:date> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Landesberger, Tatiana von</dc:contributor> <dc:contributor>Bremm, Sebastian</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Information Visualization ; 9 (2010), 3. - pp. 181-193</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17407/2/Schreck.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2010</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17407/2/Schreck.pdf"/> <dc:creator>Bremm, Sebastian</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Techniques for precision-based visual analysis of projected data</dcterms:title> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:39:48Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17407"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Landesberger, Tatiana von</dc:creator> <dcterms:abstract xml:lang="eng">The analysis of high-dimensional data is an important, yet inherently difficult problem. Projection techniques such as Principal Component Analysis, Multi-dimensional Scaling and Self-Organizing Map can be used to map high-dimensional data to 2D display space. However, projections typically incur a loss in information. Often, uncertainty exists regarding the precision of the projection as compared with its original data characteristics. While the output quality of these projection techniques can be discussed in terms of aggregate numeric error values, visualization is often helpful for better understanding the projection results. We address the visual assessment of projection precision by an approach integrating an appropriately designed projection precision measure directly into the projection visualization. To this end, a flexible projection precision measure is defined that allows the user to balance the degree of locality at which the measure is evaluated. Several visual mappings are designed for integrating the precision measure into the projection visualization at various levels of abstraction. The techniques are implemented in an interactive system, including methods supporting the user in finding appropriate settings of relevant parameters. We demonstrate the usefulness of the approach for visual analysis of classified and unclassified high-dimensional data sets. We show how our interactive precision quality visualization system helps to examine the preservation of original data properties in projected space.</dcterms:abstract> </rdf:Description> </rdf:RDF>