Publikation: SKRYN : A fast semismooth-Krylov–Newton method for controlling Ising spin systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The modeling and control of Ising spin systems is of fundamental importance in NMR spectroscopy applications. In this paper, two computer packages, ReHaG and SKRYN, are presented. Their purpose is to set-up and solve quantum optimal control problems governed by the Liouville master equation modeling Ising spin- 1/2 systems with pointwise control constraints. In particular, the MATLAB package ReHaG allows to compute a real matrix representation of the master equation. The MATLAB package SKRYN implements a new strategy resulting in a globalized semismooth matrix-free Krylov–Newton scheme. To discretize the real representation of the Liouville master equation, a norm-preserving modified Crank–Nicolson scheme is used. Results of numerical experiments demonstrate that the SKRYN code is able to provide fast and accurate solutions to the Ising spin quantum optimization problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CIARAMELLA, Gabriele, Alfio BORZÌ, 2015. SKRYN : A fast semismooth-Krylov–Newton method for controlling Ising spin systems. In: Computer Physics Communications. 2015, 190, pp. 213-223. ISSN 0010-4655. eISSN 1879-2944. Available under: doi: 10.1016/j.cpc.2015.01.006BibTex
@article{Ciaramella2015-05SKRYN-41207, year={2015}, doi={10.1016/j.cpc.2015.01.006}, title={SKRYN : A fast semismooth-Krylov–Newton method for controlling Ising spin systems}, volume={190}, issn={0010-4655}, journal={Computer Physics Communications}, pages={213--223}, author={Ciaramella, Gabriele and Borzì, Alfio} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41207"> <dcterms:issued>2015-05</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T10:34:43Z</dc:date> <dc:contributor>Borzì, Alfio</dc:contributor> <dc:creator>Borzì, Alfio</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41207"/> <dcterms:title>SKRYN : A fast semismooth-Krylov–Newton method for controlling Ising spin systems</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Ciaramella, Gabriele</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Ciaramella, Gabriele</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">The modeling and control of Ising spin systems is of fundamental importance in NMR spectroscopy applications. In this paper, two computer packages, ReHaG and SKRYN, are presented. Their purpose is to set-up and solve quantum optimal control problems governed by the Liouville master equation modeling Ising spin- 1/2 systems with pointwise control constraints. In particular, the MATLAB package ReHaG allows to compute a real matrix representation of the master equation. The MATLAB package SKRYN implements a new strategy resulting in a globalized semismooth matrix-free Krylov–Newton scheme. To discretize the real representation of the Liouville master equation, a norm-preserving modified Crank–Nicolson scheme is used. Results of numerical experiments demonstrate that the SKRYN code is able to provide fast and accurate solutions to the Ising spin quantum optimization problem.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-02T10:34:43Z</dcterms:available> </rdf:Description> </rdf:RDF>