Publikation: Analysis of a Population Model with Strong Cross-Diffusion in an Unbounded Domain
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study a parabolic population model in the full space and prove the global in time existence of a weak solution. This model consists of two strongly coupled diffusion equations describing the population densities of two competing species. The system features intrinsic growth, inter- and intra-specific competition of the species, as well as diffusion, cross-diffusion and self-diffusion, and drift terms related to varying environment quality. The cross-diffusion terms can be large, making the system non-parabolic for large initial data. The method of our proof is a combination of a time semi-discretization, a special entropy symmetrizing the system, and compactness arguments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DREHER, Michael, 2006. Analysis of a Population Model with Strong Cross-Diffusion in an Unbounded DomainBibTex
@unpublished{Dreher2006Analy-506,
year={2006},
title={Analysis of a Population Model with Strong Cross-Diffusion in an Unbounded Domain},
author={Dreher, Michael}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/506">
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dc:creator>Dreher, Michael</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:issued>2006</dcterms:issued>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/506"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:49Z</dcterms:available>
<dcterms:title>Analysis of a Population Model with Strong Cross-Diffusion in an Unbounded Domain</dcterms:title>
<dc:rights>terms-of-use</dc:rights>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/506/1/preprint_216.pdf"/>
<dc:contributor>Dreher, Michael</dc:contributor>
<dcterms:abstract xml:lang="eng">We study a parabolic population model in the full space and prove the global in time existence of a weak solution. This model consists of two strongly coupled diffusion equations describing the population densities of two competing species. The system features intrinsic growth, inter- and intra-specific competition of the species, as well as diffusion, cross-diffusion and self-diffusion, and drift terms related to varying environment quality. The cross-diffusion terms can be large, making the system non-parabolic for large initial data. The method of our proof is a combination of a time semi-discretization, a special entropy symmetrizing the system, and compactness arguments.</dcterms:abstract>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:language>eng</dc:language>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/506/1/preprint_216.pdf"/>
<dc:format>application/pdf</dc:format>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:49Z</dc:date>
</rdf:Description>
</rdf:RDF>