Publikation:

Optimal exponential utility in a jump bond market

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Xiong, Dewen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Stochastic Analysis and Applications. 2010, 29(1), pp. 78-105. ISSN 0736-2994. Available under: doi: 10.1080/07362994.2011.532025

Zusammenfassung

We consider the optimal exponential utility in a bond market with jumps basing on a model similar to Bjork et al. [4], which is arbitrage free. Similar to the normalized integral with respect to the cylindrical martingale first introduced in Mikulevicius and Rozovskii [13], we introduce the (, Q0)-normalized martingale and local (, Q0)-normalized martingale. For a given maturity T0 ∈ [0, T*], we describe the minimal entropy martingale (MEM) based on [T0, T*] by a backward semimartingale equation (BSE) w.r.t. the (, Q0)-normalized martingale. Then we give an explicit form of the optimal approximate wealth to the optimal exp-utility problem by making use of the solution of the BSE. Finally, we describe the dynamics of the exp utility indifference valuation of a bounded contingent claim H ∈ L∞(FT0) by another BSE under the minimal entropy martingale measure in the incomplete market.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690XIONG, Dewen, Michael KOHLMANN, 2010. Optimal exponential utility in a jump bond market. In: Stochastic Analysis and Applications. 2010, 29(1), pp. 78-105. ISSN 0736-2994. Available under: doi: 10.1080/07362994.2011.532025
BibTex
@article{Xiong2010Optim-832,
  year={2010},
  doi={10.1080/07362994.2011.532025},
  title={Optimal exponential utility in a jump bond market},
  number={1},
  volume={29},
  issn={0736-2994},
  journal={Stochastic Analysis and Applications},
  pages={78--105},
  author={Xiong, Dewen and Kohlmann, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/832">
    <dc:creator>Kohlmann, Michael</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/832"/>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:02Z</dcterms:available>
    <dc:contributor>Xiong, Dewen</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We consider the optimal exponential utility in a bond market with jumps basing on a model similar to Bjork et al. [4], which is arbitrage free. Similar to the normalized integral with respect to the cylindrical martingale first introduced in Mikulevicius and Rozovskii [13], we introduce the (, Q0)-normalized martingale and local (, Q0)-normalized martingale. For a given maturity T0 ∈ [0, T*], we describe the minimal entropy martingale (MEM) based on [T0, T*] by a backward semimartingale equation (BSE) w.r.t. the (, Q0)-normalized martingale. Then we give an explicit form of the optimal approximate wealth to the optimal exp-utility problem by making use of the solution of the BSE. Finally, we describe the dynamics of the exp utility indifference valuation of a bounded contingent claim H ∈ L∞(FT0) by another BSE under the minimal entropy martingale measure in the incomplete market.</dcterms:abstract>
    <dcterms:title>Optimal exponential utility in a jump bond market</dcterms:title>
    <dcterms:bibliographicCitation>Stochastic analysis and applications ; 29 (2010), 1. - S. 78-105</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:02Z</dc:date>
    <dc:contributor>Kohlmann, Michael</dc:contributor>
    <dc:creator>Xiong, Dewen</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen