Publikation: Optimal exponential utility in a jump bond market
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the optimal exponential utility in a bond market with jumps basing on a model similar to Bjork et al. [4], which is arbitrage free. Similar to the normalized integral with respect to the cylindrical martingale first introduced in Mikulevicius and Rozovskii [13], we introduce the (, Q0)-normalized martingale and local (, Q0)-normalized martingale. For a given maturity T0 ∈ [0, T*], we describe the minimal entropy martingale (MEM) based on [T0, T*] by a backward semimartingale equation (BSE) w.r.t. the (, Q0)-normalized martingale. Then we give an explicit form of the optimal approximate wealth to the optimal exp-utility problem by making use of the solution of the BSE. Finally, we describe the dynamics of the exp utility indifference valuation of a bounded contingent claim H ∈ L∞(FT0) by another BSE under the minimal entropy martingale measure in the incomplete market.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XIONG, Dewen, Michael KOHLMANN, 2010. Optimal exponential utility in a jump bond market. In: Stochastic Analysis and Applications. 2010, 29(1), pp. 78-105. ISSN 0736-2994. Available under: doi: 10.1080/07362994.2011.532025BibTex
@article{Xiong2010Optim-832, year={2010}, doi={10.1080/07362994.2011.532025}, title={Optimal exponential utility in a jump bond market}, number={1}, volume={29}, issn={0736-2994}, journal={Stochastic Analysis and Applications}, pages={78--105}, author={Xiong, Dewen and Kohlmann, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/832"> <dc:creator>Kohlmann, Michael</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/832"/> <dcterms:issued>2010</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:02Z</dcterms:available> <dc:contributor>Xiong, Dewen</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We consider the optimal exponential utility in a bond market with jumps basing on a model similar to Bjork et al. [4], which is arbitrage free. Similar to the normalized integral with respect to the cylindrical martingale first introduced in Mikulevicius and Rozovskii [13], we introduce the (, Q0)-normalized martingale and local (, Q0)-normalized martingale. For a given maturity T0 ∈ [0, T*], we describe the minimal entropy martingale (MEM) based on [T0, T*] by a backward semimartingale equation (BSE) w.r.t. the (, Q0)-normalized martingale. Then we give an explicit form of the optimal approximate wealth to the optimal exp-utility problem by making use of the solution of the BSE. Finally, we describe the dynamics of the exp utility indifference valuation of a bounded contingent claim H ∈ L∞(FT0) by another BSE under the minimal entropy martingale measure in the incomplete market.</dcterms:abstract> <dcterms:title>Optimal exponential utility in a jump bond market</dcterms:title> <dcterms:bibliographicCitation>Stochastic analysis and applications ; 29 (2010), 1. - S. 78-105</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:49:02Z</dc:date> <dc:contributor>Kohlmann, Michael</dc:contributor> <dc:creator>Xiong, Dewen</dc:creator> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>