TranSalNet : Towards perceptually relevant visual saliency prediction

Lade...
Vorschaubild
Dateien
Lou_2-5kwhrr209v4z8.pdf
Lou_2-5kwhrr209v4z8.pdfGröße: 2.78 MBDownloads: 116
Datum
2022
Autor:innen
Lou, Jianxun
Marshall, David
Liu, Hantao
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Neurocomputing. Elsevier. 2022, 494, pp. 455-467. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2022.04.080
Zusammenfassung

Convolutional neural networks (CNNs) have significantly advanced computational modelling for saliency prediction. However, accurately simulating the mechanisms of visual attention in the human cortex remains an academic challenge. It is critical to integrate properties of human vision into the design of CNN architectures, leading to perceptually more relevant saliency prediction. Due to the inherent inductive biases of CNN architectures, there is a lack of sufficient long-range contextual encoding capacity. This hinders CNN-based saliency models from capturing properties that emulate viewing behaviour of humans. Transformers have shown great potential in encoding long-range information by leveraging the self-attention mechanism. In this paper, we propose a novel saliency model that integrates transformer components to CNNs to capture the long-range contextual visual information. Experimental results show that the transformers provide added value to saliency prediction, enhancing its perceptual relevance in the performance. Our proposed saliency model using transformers has achieved superior results on public benchmarks and competitions for saliency prediction models.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LOU, Jianxun, Hanhe LIN, David MARSHALL, Dietmar SAUPE, Hantao LIU, 2022. TranSalNet : Towards perceptually relevant visual saliency prediction. In: Neurocomputing. Elsevier. 2022, 494, pp. 455-467. ISSN 0925-2312. eISSN 1872-8286. Available under: doi: 10.1016/j.neucom.2022.04.080
BibTex
@article{Lou2022TranS-57968,
  year={2022},
  doi={10.1016/j.neucom.2022.04.080},
  title={TranSalNet : Towards perceptually relevant visual saliency prediction},
  volume={494},
  issn={0925-2312},
  journal={Neurocomputing},
  pages={455--467},
  author={Lou, Jianxun and Lin, Hanhe and Marshall, David and Saupe, Dietmar and Liu, Hantao}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57968">
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dcterms:abstract xml:lang="eng">Convolutional neural networks (CNNs) have significantly advanced computational modelling for saliency prediction. However, accurately simulating the mechanisms of visual attention in the human cortex remains an academic challenge. It is critical to integrate properties of human vision into the design of CNN architectures, leading to perceptually more relevant saliency prediction. Due to the inherent inductive biases of CNN architectures, there is a lack of sufficient long-range contextual encoding capacity. This hinders CNN-based saliency models from capturing properties that emulate viewing behaviour of humans. Transformers have shown great potential in encoding long-range information by leveraging the self-attention mechanism. In this paper, we propose a novel saliency model that integrates transformer components to CNNs to capture the long-range contextual visual information. Experimental results show that the transformers provide added value to saliency prediction, enhancing its perceptual relevance in the performance. Our proposed saliency model using transformers has achieved superior results on public benchmarks and competitions for saliency prediction models.</dcterms:abstract>
    <dc:creator>Marshall, David</dc:creator>
    <dc:creator>Lou, Jianxun</dc:creator>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T07:23:56Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Marshall, David</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57968/1/Lou_2-5kwhrr209v4z8.pdf"/>
    <dc:contributor>Lou, Jianxun</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-08T07:23:56Z</dc:date>
    <dc:contributor>Liu, Hantao</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57968"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57968/1/Lou_2-5kwhrr209v4z8.pdf"/>
    <dc:creator>Liu, Hantao</dc:creator>
    <dcterms:title>TranSalNet : Towards perceptually relevant visual saliency prediction</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen