Publikation: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Detection of Alzheimer's disease (AD) at the first stages of the pathology is an important task to accelerate the development of new therapies and improve treatment. Compared to AD detection, the prediction of AD using structural MRI at the mild cognitive impairment (MCI) or pre-MCI stage is more complex because the associated anatomical changes are more subtle. In this study, we analyzed the capability of a recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), to predict AD by analyzing entorhinal cortex (EC) and hippocampus (HC) scoring over the entire ADNI database (834 scans). Detection (AD vs. CN) and prediction (progressive - pMCI vs. stable - sMCI) efficiency of SNIPE were studied using volumetric and grading biomarkers. First, our results indicate that grading-based biomarkers are more relevant for prediction than volume-based biomarkers. Second, we show that HC-based biomarkers are more important than EC-based biomarkers for prediction. Third, we demonstrate that the results obtained by SNIPE are similar to or better than results obtained in an independent study using HC volume, cortical thickness, and tensor-based morphometry, individually and in combination. Fourth, a comparison of new patch-based methods shows that the nonlocal redundancy strategy involved in SNIPE obtained similar results to a new local sparse-based approach. Finally, we present the first results of patch-based morphometry to illustrate the progression of the pathology.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
COUPÉ, Pierrick, Simon F. ESKILDSEN, José V. MANJÓN, Vladimir S. FONOV, Jens C. PRUESSNER, Michèle ALLARD, D. Louis COLLINS, 2012. Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease. In: NeuroImage: Clinical. 2012, 1(1), pp. 141-152. eISSN 2213-1582. Available under: doi: 10.1016/j.nicl.2012.10.002BibTex
@article{Coupe2012Scori-38500, year={2012}, doi={10.1016/j.nicl.2012.10.002}, title={Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease}, number={1}, volume={1}, journal={NeuroImage: Clinical}, pages={141--152}, author={Coupé, Pierrick and Eskildsen, Simon F. and Manjón, José V. and Fonov, Vladimir S. and Pruessner, Jens C. and Allard, Michèle and Collins, D. Louis} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38500"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Eskildsen, Simon F.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:creator>Allard, Michèle</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38500"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-18T08:17:57Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/3.0/"/> <dc:contributor>Fonov, Vladimir S.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-18T08:17:57Z</dc:date> <dc:rights>Attribution-NonCommercial-NoDerivs 3.0 Unported</dc:rights> <dc:contributor>Pruessner, Jens C.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2012</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38500/3/Coup%c3%a9_0-402027.pdf"/> <dc:creator>Fonov, Vladimir S.</dc:creator> <dc:contributor>Manjón, José V.</dc:contributor> <dc:creator>Pruessner, Jens C.</dc:creator> <dcterms:abstract xml:lang="eng">Detection of Alzheimer's disease (AD) at the first stages of the pathology is an important task to accelerate the development of new therapies and improve treatment. Compared to AD detection, the prediction of AD using structural MRI at the mild cognitive impairment (MCI) or pre-MCI stage is more complex because the associated anatomical changes are more subtle. In this study, we analyzed the capability of a recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), to predict AD by analyzing entorhinal cortex (EC) and hippocampus (HC) scoring over the entire ADNI database (834 scans). Detection (AD vs. CN) and prediction (progressive - pMCI vs. stable - sMCI) efficiency of SNIPE were studied using volumetric and grading biomarkers. First, our results indicate that grading-based biomarkers are more relevant for prediction than volume-based biomarkers. Second, we show that HC-based biomarkers are more important than EC-based biomarkers for prediction. Third, we demonstrate that the results obtained by SNIPE are similar to or better than results obtained in an independent study using HC volume, cortical thickness, and tensor-based morphometry, individually and in combination. Fourth, a comparison of new patch-based methods shows that the nonlocal redundancy strategy involved in SNIPE obtained similar results to a new local sparse-based approach. Finally, we present the first results of patch-based morphometry to illustrate the progression of the pathology.</dcterms:abstract> <dc:contributor>Coupé, Pierrick</dc:contributor> <dc:creator>Eskildsen, Simon F.</dc:creator> <dc:creator>Collins, D. Louis</dc:creator> <dc:contributor>Allard, Michèle</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38500/3/Coup%c3%a9_0-402027.pdf"/> <dc:creator>Manjón, José V.</dc:creator> <dcterms:title>Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease</dcterms:title> <dc:contributor>Collins, D. Louis</dc:contributor> <dc:creator>Coupé, Pierrick</dc:creator> </rdf:Description> </rdf:RDF>