Publikation:

Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease

Lade...
Vorschaubild

Dateien

Coupé_0-402027.pdf
Coupé_0-402027.pdfGröße: 1.57 MBDownloads: 193

Datum

2012

Autor:innen

Coupé, Pierrick
Eskildsen, Simon F.
Manjón, José V.
Fonov, Vladimir S.
Allard, Michèle
Collins, D. Louis

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

NeuroImage: Clinical. 2012, 1(1), pp. 141-152. eISSN 2213-1582. Available under: doi: 10.1016/j.nicl.2012.10.002

Zusammenfassung

Detection of Alzheimer's disease (AD) at the first stages of the pathology is an important task to accelerate the development of new therapies and improve treatment. Compared to AD detection, the prediction of AD using structural MRI at the mild cognitive impairment (MCI) or pre-MCI stage is more complex because the associated anatomical changes are more subtle. In this study, we analyzed the capability of a recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), to predict AD by analyzing entorhinal cortex (EC) and hippocampus (HC) scoring over the entire ADNI database (834 scans). Detection (AD vs. CN) and prediction (progressive - pMCI vs. stable - sMCI) efficiency of SNIPE were studied using volumetric and grading biomarkers. First, our results indicate that grading-based biomarkers are more relevant for prediction than volume-based biomarkers. Second, we show that HC-based biomarkers are more important than EC-based biomarkers for prediction. Third, we demonstrate that the results obtained by SNIPE are similar to or better than results obtained in an independent study using HC volume, cortical thickness, and tensor-based morphometry, individually and in combination. Fourth, a comparison of new patch-based methods shows that the nonlocal redundancy strategy involved in SNIPE obtained similar results to a new local sparse-based approach. Finally, we present the first results of patch-based morphometry to illustrate the progression of the pathology.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Scoring; Grading; Hippocampus; Entorhinal cortex; Patient's classification; Nonlocal means estimator; Alzheimer's disease; Early detection

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690COUPÉ, Pierrick, Simon F. ESKILDSEN, José V. MANJÓN, Vladimir S. FONOV, Jens C. PRUESSNER, Michèle ALLARD, D. Louis COLLINS, 2012. Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease. In: NeuroImage: Clinical. 2012, 1(1), pp. 141-152. eISSN 2213-1582. Available under: doi: 10.1016/j.nicl.2012.10.002
BibTex
@article{Coupe2012Scori-38500,
  year={2012},
  doi={10.1016/j.nicl.2012.10.002},
  title={Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease},
  number={1},
  volume={1},
  journal={NeuroImage: Clinical},
  pages={141--152},
  author={Coupé, Pierrick and Eskildsen, Simon F. and Manjón, José V. and Fonov, Vladimir S. and Pruessner, Jens C. and Allard, Michèle and Collins, D. Louis}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38500">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Eskildsen, Simon F.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Allard, Michèle</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38500"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-18T08:17:57Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/3.0/"/>
    <dc:contributor>Fonov, Vladimir S.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-18T08:17:57Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 3.0 Unported</dc:rights>
    <dc:contributor>Pruessner, Jens C.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2012</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38500/3/Coup%c3%a9_0-402027.pdf"/>
    <dc:creator>Fonov, Vladimir S.</dc:creator>
    <dc:contributor>Manjón, José V.</dc:contributor>
    <dc:creator>Pruessner, Jens C.</dc:creator>
    <dcterms:abstract xml:lang="eng">Detection of Alzheimer's disease (AD) at the first stages of the pathology is an important task to accelerate the development of new therapies and improve treatment. Compared to AD detection, the prediction of AD using structural MRI at the mild cognitive impairment (MCI) or pre-MCI stage is more complex because the associated anatomical changes are more subtle. In this study, we analyzed the capability of a recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), to predict AD by analyzing entorhinal cortex (EC) and hippocampus (HC) scoring over the entire ADNI database (834 scans). Detection (AD vs. CN) and prediction (progressive - pMCI vs. stable - sMCI) efficiency of SNIPE were studied using volumetric and grading biomarkers. First, our results indicate that grading-based biomarkers are more relevant for prediction than volume-based biomarkers. Second, we show that HC-based biomarkers are more important than EC-based biomarkers for prediction. Third, we demonstrate that the results obtained by SNIPE are similar to or better than results obtained in an independent study using HC volume, cortical thickness, and tensor-based morphometry, individually and in combination. Fourth, a comparison of new patch-based methods shows that the nonlocal redundancy strategy involved in SNIPE obtained similar results to a new local sparse-based approach. Finally, we present the first results of patch-based morphometry to illustrate the progression of the pathology.</dcterms:abstract>
    <dc:contributor>Coupé, Pierrick</dc:contributor>
    <dc:creator>Eskildsen, Simon F.</dc:creator>
    <dc:creator>Collins, D. Louis</dc:creator>
    <dc:contributor>Allard, Michèle</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38500/3/Coup%c3%a9_0-402027.pdf"/>
    <dc:creator>Manjón, José V.</dc:creator>
    <dcterms:title>Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease</dcterms:title>
    <dc:contributor>Collins, D. Louis</dc:contributor>
    <dc:creator>Coupé, Pierrick</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen