Publikation: One-level density of families of elliptic curves and the Ratios Conjecture
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Using the Ratios Conjecture as introduced by Conrey, Farmer and Zirnbauer, we obtain closed formulas for the one-level density for two families of L-functions attached to elliptic curves, and we can then determine the underlying symmetry types of the families. The one-level scaling density for the first family corresponds to the orthogonal distribution as predicted by the conjectures of Katz and Sarnak, and the one-level scaling density for the second family is the sum of the Dirac distribution and the even orthogonal distribution. This is a new phenomenon for a family of curves with odd rank: the trivial zero at the central point accounts for the Dirac distribution, and also affects the remaining part of the scaling density which is then (maybe surprisingly) the even orthogonal distribution. The one-level density for this family was studied in the past for test functions with Fourier transforms of limited support, but since the Fourier transforms of the even orthogonal and odd orthogonal distributions are undistinguishable for small support, it was not possible to identify the distribution with those techniques. This can be done with the Ratios Conjecture, and it sheds more light on “independent” and “non-independent” zeroes, and the repulsion phenomenon.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DAVID, Chantal, Duc K. HUYNH, James PARKS, 2015. One-level density of families of elliptic curves and the Ratios Conjecture. In: Research in Number Theory. Springer. 2015, 1(1), 6. ISSN 2522-0160. eISSN 2363-9555. Available under: doi: 10.1007/s40993-015-0005-7BibTex
@article{David2015-12Onele-53232, year={2015}, doi={10.1007/s40993-015-0005-7}, title={One-level density of families of elliptic curves and the Ratios Conjecture}, number={1}, volume={1}, issn={2522-0160}, journal={Research in Number Theory}, author={David, Chantal and Huynh, Duc K. and Parks, James}, note={Article Number: 6} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53232"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Huynh, Duc K.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-23T09:37:07Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Huynh, Duc K.</dc:creator> <dcterms:title>One-level density of families of elliptic curves and the Ratios Conjecture</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Parks, James</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-23T09:37:07Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Using the Ratios Conjecture as introduced by Conrey, Farmer and Zirnbauer, we obtain closed formulas for the one-level density for two families of L-functions attached to elliptic curves, and we can then determine the underlying symmetry types of the families. The one-level scaling density for the first family corresponds to the orthogonal distribution as predicted by the conjectures of Katz and Sarnak, and the one-level scaling density for the second family is the sum of the Dirac distribution and the even orthogonal distribution. This is a new phenomenon for a family of curves with odd rank: the trivial zero at the central point accounts for the Dirac distribution, and also affects the remaining part of the scaling density which is then (maybe surprisingly) the even orthogonal distribution. The one-level density for this family was studied in the past for test functions with Fourier transforms of limited support, but since the Fourier transforms of the even orthogonal and odd orthogonal distributions are undistinguishable for small support, it was not possible to identify the distribution with those techniques. This can be done with the Ratios Conjecture, and it sheds more light on “independent” and “non-independent” zeroes, and the repulsion phenomenon.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53232/1/David_2-5vsatko2gb0l1.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53232/1/David_2-5vsatko2gb0l1.pdf"/> <dc:creator>David, Chantal</dc:creator> <dc:creator>Parks, James</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>David, Chantal</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53232"/> <dcterms:issued>2015-12</dcterms:issued> </rdf:Description> </rdf:RDF>