Publikation:

One-level density of families of elliptic curves and the Ratios Conjecture

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

David, Chantal
Parks, James

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Research in Number Theory. Springer. 2015, 1(1), 6. ISSN 2522-0160. eISSN 2363-9555. Available under: doi: 10.1007/s40993-015-0005-7

Zusammenfassung

Using the Ratios Conjecture as introduced by Conrey, Farmer and Zirnbauer, we obtain closed formulas for the one-level density for two families of L-functions attached to elliptic curves, and we can then determine the underlying symmetry types of the families. The one-level scaling density for the first family corresponds to the orthogonal distribution as predicted by the conjectures of Katz and Sarnak, and the one-level scaling density for the second family is the sum of the Dirac distribution and the even orthogonal distribution. This is a new phenomenon for a family of curves with odd rank: the trivial zero at the central point accounts for the Dirac distribution, and also affects the remaining part of the scaling density which is then (maybe surprisingly) the even orthogonal distribution. The one-level density for this family was studied in the past for test functions with Fourier transforms of limited support, but since the Fourier transforms of the even orthogonal and odd orthogonal distributions are undistinguishable for small support, it was not possible to identify the distribution with those techniques. This can be done with the Ratios Conjecture, and it sheds more light on “independent” and “non-independent” zeroes, and the repulsion phenomenon.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Number Theory, Elliptic Curve, Elliptic Curf, Chebyshev Polynomial, Root Number

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DAVID, Chantal, Duc K. HUYNH, James PARKS, 2015. One-level density of families of elliptic curves and the Ratios Conjecture. In: Research in Number Theory. Springer. 2015, 1(1), 6. ISSN 2522-0160. eISSN 2363-9555. Available under: doi: 10.1007/s40993-015-0005-7
BibTex
@article{David2015-12Onele-53232,
  year={2015},
  doi={10.1007/s40993-015-0005-7},
  title={One-level density of families of elliptic curves and the Ratios Conjecture},
  number={1},
  volume={1},
  issn={2522-0160},
  journal={Research in Number Theory},
  author={David, Chantal and Huynh, Duc K. and Parks, James},
  note={Article Number: 6}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53232">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Huynh, Duc K.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-23T09:37:07Z</dc:date>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Huynh, Duc K.</dc:creator>
    <dcterms:title>One-level density of families of elliptic curves and the Ratios Conjecture</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Parks, James</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-23T09:37:07Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Using the Ratios Conjecture as introduced by Conrey, Farmer and Zirnbauer, we obtain closed formulas for the one-level density for two families of L-functions attached to elliptic curves, and we can then determine the underlying symmetry types of the families. The one-level scaling density for the first family corresponds to the orthogonal distribution as predicted by the conjectures of Katz and Sarnak, and the one-level scaling density for the second family is the sum of the Dirac distribution and the even orthogonal distribution. This is a new phenomenon for a family of curves with odd rank: the trivial zero at the central point accounts for the Dirac distribution, and also affects the remaining part of the scaling density which is then (maybe surprisingly) the even orthogonal distribution. The one-level density for this family was studied in the past for test functions with Fourier transforms of limited support, but since the Fourier transforms of the even orthogonal and odd orthogonal distributions are undistinguishable for small support, it was not possible to identify the distribution with those techniques. This can be done with the Ratios Conjecture, and it sheds more light on “independent” and “non-independent” zeroes, and the repulsion phenomenon.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53232/1/David_2-5vsatko2gb0l1.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53232/1/David_2-5vsatko2gb0l1.pdf"/>
    <dc:creator>David, Chantal</dc:creator>
    <dc:creator>Parks, James</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>David, Chantal</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53232"/>
    <dcterms:issued>2015-12</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen