Publikation: NStreamAware : Real-Time Visual Analytics for Data Streams to Enhance Situational Awareness
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The analysis of data streams is important in many security-related domains to gain situational awareness. To provide monitoring and visual analysis of such data streams, we propose a system, called NStreamAware, that uses modern distributed processing technologies to analyze streams using stream slices, which are presented to analysts in a web-based visual analytics application, called NVisAware. Furthermore, we visually guide the user in the feature selection process to summarize the slices to focus on the most interesting parts of the stream based on introduced expert knowledge of the analyst. We show through case studies, how the system can be used to gain situational awareness and eventually enhance network security. Furthermore, we apply the system to a social media data stream to compete in an international challenge to evaluate the applicability of our approach to other domains.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FISCHER, Fabian, Daniel A. KEIM, 2014. NStreamAware : Real-Time Visual Analytics for Data Streams to Enhance Situational Awareness. VizSec '14 : 11th International Symposium on Visualization for Cyber Security. Paris, 10. Nov. 2014. In: LANE HARRISON ..., , ed.. Proceedings of the Eleventh Workshop on Visualization for Cyber Security (VizSec '14), Paris, France, November 10, 2014. New York, NY: ACM, 2014, pp. 65-72. ISBN 978-1-4503-2826-5. Available under: doi: 10.1145/2671491.2671495BibTex
@inproceedings{Fischer2014NStre-30006, year={2014}, doi={10.1145/2671491.2671495}, title={NStreamAware : Real-Time Visual Analytics for Data Streams to Enhance Situational Awareness}, isbn={978-1-4503-2826-5}, publisher={ACM}, address={New York, NY}, booktitle={Proceedings of the Eleventh Workshop on Visualization for Cyber Security (VizSec '14), Paris, France, November 10, 2014}, pages={65--72}, editor={Lane Harrison ...}, author={Fischer, Fabian and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30006"> <dc:creator>Fischer, Fabian</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>NStreamAware : Real-Time Visual Analytics for Data Streams to Enhance Situational Awareness</dcterms:title> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Fischer, Fabian</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30006"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30006/1/Fischer_0-267315.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T14:40:36Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">The analysis of data streams is important in many security-related domains to gain situational awareness. To provide monitoring and visual analysis of such data streams, we propose a system, called NStreamAware, that uses modern distributed processing technologies to analyze streams using stream slices, which are presented to analysts in a web-based visual analytics application, called NVisAware. Furthermore, we visually guide the user in the feature selection process to summarize the slices to focus on the most interesting parts of the stream based on introduced expert knowledge of the analyst. We show through case studies, how the system can be used to gain situational awareness and eventually enhance network security. Furthermore, we apply the system to a social media data stream to compete in an international challenge to evaluate the applicability of our approach to other domains.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30006/1/Fischer_0-267315.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T14:40:36Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>