Visual analytics of urban environments using high-resolution geographic data

Lade...
Vorschaubild
Dateien
Bak etal.pdf
Bak etal.pdfGröße: 9.18 MBDownloads: 759
Datum
2010
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
PAINHO, Marco, ed., Hardy PUNDT, ed., Maribel Yasmina SANTOS, ed.. Geospatial thinking. Berlin [u.a.]: Springer, 2010, pp. 25-42. Lecture Notes in Geoinformation and Cartography. ISBN 978-3-642-12326-9. Available under: doi: 10.1007/978-3-642-12326-9_2
Zusammenfassung

High-resolution urban data at house level are essential for understanding the relationship between objects of the urban built environment (e.g. streets, housing types, public resources and open spaces). However, it is rather difficult to analyze such data due to the huge amount of urban objects, their multidimensional character and the complex spatial relation between them. In this paper we propose a methodology for assessing the spatial relation between geo-referenced urban environmental variables, in order to identify typical or significant spatial configurations as well as to characterize their geographical distribution. Configuration in this sense refers to the unique combination of different urban environmental variables. We structure the analytic process by defining spatial configurations, multidimensional clustering of the individual configurations, and identifying emerging patterns of interesting configurations. This process is based on the tight combination of interactive visualization methods with automatic analysis techniques. We demonstrate the usefulness of the proposed methods and methodology in an application example on the relation between street network topology and distribution of land uses in a city.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Geoinformation, Kongress, Guimarães
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BAK, Peter, Itzhak OMER, Tobias SCHRECK, 2010. Visual analytics of urban environments using high-resolution geographic data. In: PAINHO, Marco, ed., Hardy PUNDT, ed., Maribel Yasmina SANTOS, ed.. Geospatial thinking. Berlin [u.a.]: Springer, 2010, pp. 25-42. Lecture Notes in Geoinformation and Cartography. ISBN 978-3-642-12326-9. Available under: doi: 10.1007/978-3-642-12326-9_2
BibTex
@incollection{Bak2010Visua-14964,
  year={2010},
  doi={10.1007/978-3-642-12326-9_2},
  title={Visual analytics of urban environments using high-resolution geographic data},
  isbn={978-3-642-12326-9},
  publisher={Springer},
  address={Berlin [u.a.]},
  series={Lecture Notes in Geoinformation and Cartography},
  booktitle={Geospatial thinking},
  pages={25--42},
  editor={Painho, Marco and Pundt, Hardy and Santos, Maribel Yasmina},
  author={Bak, Peter and Omer, Itzhak and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/14964">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14964"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-19T13:17:48Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Omer, Itzhak</dc:creator>
    <dcterms:issued>2010</dcterms:issued>
    <dcterms:abstract xml:lang="eng">High-resolution urban data at house level are essential for understanding the relationship between objects of the urban built environment (e.g. streets, housing types, public resources and open spaces). However, it is rather difficult to analyze such data due to the huge amount of urban objects, their multidimensional character and the complex spatial relation between them. In this paper we propose a methodology for assessing the spatial relation between geo-referenced urban environmental variables, in order to identify typical or significant spatial configurations as well as to characterize their geographical distribution. Configuration in this sense refers to the unique combination of different urban environmental variables. We structure the analytic process by defining spatial configurations, multidimensional clustering of the individual configurations, and identifying emerging patterns of interesting configurations. This process is based on the tight combination of interactive visualization methods with automatic analysis techniques. We demonstrate the usefulness of the proposed methods and methodology in an application example on the relation between street network topology and distribution of land uses in a city.</dcterms:abstract>
    <dc:contributor>Bak, Peter</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-08-19T13:17:48Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Geospatial thinking / Marco Painho, Hardy Pundt, Maribel Yasmina Santos (eds.). - Berlin [u.a.] : Springer, 2010. - pp. 25-42. - (Lecture Notes in Geoinformation and Cartography). - ISBN 978-3-642-12326-9</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14964/2/Bak%20etal.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14964/2/Bak%20etal.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Omer, Itzhak</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Visual analytics of urban environments using high-resolution geographic data</dcterms:title>
    <dc:creator>Bak, Peter</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen