Publikation:

Secant Cumulants and Toric Geometry

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Oeding, Luke
Zwiernik, Piotr

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Mathematics Research Notices (IMRN). Oxford University Press (OUP). 2015, 2015(12), pp. 4019-4063. ISSN 1073-7928. eISSN 1687-0247. Available under: doi: 10.1093/imrn/rnu056

Zusammenfassung

We study the secant line variety of the Segre product of projective spaces using special cumulant coordinates adapted for secant varieties. We show that the secant variety is covered by open normal toric varieties. We prove that in cumulant coordinates its ideal is generated by binomial quadrics. We present new results on the local structure of the secant variety. In particular, we show that it has rational singularities and we give a description of the singular locus. We also classify all secant varieties that are Gorenstein. Moreover, generalizing [31], we obtain analogous results for the tangential variety.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MICHALEK, Mateusz, Luke OEDING, Piotr ZWIERNIK, 2015. Secant Cumulants and Toric Geometry. In: International Mathematics Research Notices (IMRN). Oxford University Press (OUP). 2015, 2015(12), pp. 4019-4063. ISSN 1073-7928. eISSN 1687-0247. Available under: doi: 10.1093/imrn/rnu056
BibTex
@article{Michalek2015Secan-52522,
  year={2015},
  doi={10.1093/imrn/rnu056},
  title={Secant Cumulants and Toric Geometry},
  number={12},
  volume={2015},
  issn={1073-7928},
  journal={International Mathematics Research Notices (IMRN)},
  pages={4019--4063},
  author={Michalek, Mateusz and Oeding, Luke and Zwiernik, Piotr}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52522">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T13:03:21Z</dcterms:available>
    <dc:creator>Zwiernik, Piotr</dc:creator>
    <dc:contributor>Zwiernik, Piotr</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T13:03:21Z</dc:date>
    <dcterms:abstract xml:lang="eng">We study the secant line variety of the Segre product of projective spaces using special cumulant coordinates adapted for secant varieties. We show that the secant variety is covered by open normal toric varieties. We prove that in cumulant coordinates its ideal is generated by binomial quadrics. We present new results on the local structure of the secant variety. In particular, we show that it has rational singularities and we give a description of the singular locus. We also classify all secant varieties that are Gorenstein. Moreover, generalizing [31], we obtain analogous results for the tangential variety.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52522"/>
    <dcterms:title>Secant Cumulants and Toric Geometry</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Oeding, Luke</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:contributor>Oeding, Luke</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen