Publikation: Analyzing Large Collections of E-Mail
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
One of the first applications of the Internet was the electronic mailing (e-mail). Along with the evolution of the Internet, e-mail has evolved into a powerful and popular technology. Messages, electronically documents, pictures and even movies can be send between users of computer systems at different places all over the world within seconds. Electronic mail is a fast, a cheap and a comfortable communication method. But with the exponential increase of the Internet users and the corresponding increasing e-mail traffic, new problems arise. Examples are Spam mails or computer viruses hidden in email attachments. Therefore the analysis of email and email traffic becomes more and more important. In this paper we discuss visualization methods for analyzing large amounts of e-mails to detect interesting patterns or to identify Spam e-mails.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, 2004. Analyzing Large Collections of E-Mail. KE'04. Las Vegas, Nevada, USA, 21. Juni 2004 - 24. Juni 2004. In: Proceedings of the International Conference on Information and Knowledge Engineering. IKE ' 04, June 21 - 24, 2004, Las Vegas, Nevada, USA. Las Vegas: CSREA Pr., 2004, pp. 275-281BibTex
@inproceedings{Keim2004Analy-5613, year={2004}, title={Analyzing Large Collections of E-Mail}, publisher={CSREA Pr.}, address={Las Vegas}, booktitle={Proceedings of the International Conference on Information and Knowledge Engineering. IKE ' 04, June 21 - 24, 2004, Las Vegas, Nevada, USA}, pages={275--281}, author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5613"> <dcterms:issued>2004</dcterms:issued> <dcterms:abstract xml:lang="eng">One of the first applications of the Internet was the electronic mailing (e-mail). Along with the evolution of the Internet, e-mail has evolved into a powerful and popular technology. Messages, electronically documents, pictures and even movies can be send between users of computer systems at different places all over the world within seconds. Electronic mail is a fast, a cheap and a comfortable communication method. But with the exponential increase of the Internet users and the corresponding increasing e-mail traffic, new problems arise. Examples are Spam mails or computer viruses hidden in email attachments. Therefore the analysis of email and email traffic becomes more and more important. In this paper we discuss visualization methods for analyzing large amounts of e-mails to detect interesting patterns or to identify Spam e-mails.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Panse, Christian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:12Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5613/1/IKE04.pdf"/> <dcterms:title>Analyzing Large Collections of E-Mail</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:12Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5613/1/IKE04.pdf"/> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5613"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Panse, Christian</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Proceedings of the International Conference on Information and Knowledge Engineering. IKE'04, June 21-24, 2004, Las Vegas, Nevada, USA. Las Vegas: CSREA Pr., 2004, pp. 275-281</dcterms:bibliographicCitation> <dc:creator>Sips, Mike</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Sips, Mike</dc:contributor> <dc:creator>Schneidewind, Jörn</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>