Publikation: A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A classical model used in the study of dynamics of polymeric liquids is the bead-spring chain representation of polymer molecules. The chain typically consists of a large number of beads and thus the state space V of its configuration, which is essentially the position of all the constituent beads, turns out to be high dimensional. The distribution function governing the configuration of a bead-spring chain undergoing shear flow is a Fokker–Planck equation on V. In this article, we present QMC methods for the approximate solution of the Fokker–Planck equation which are based on the time splitting technique to treat convection and diffusion separately. Convection is carried out by moving the particles along the characteristics and we apply the algorithms presented in [G. Venkiteswaran, M. Junk, QMC algorithms for diffusion equations in high dimensions, Math. Comput. Simul. 68 (2005) 23–41.] for diffusion. Altogether, we find that some of the QMC methods show reduced variance and thus slightly outperform standard MC.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
VENKITESWARAN, G., Michael JUNK, 2005. A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids. In: Mathematics and Computers in Simulation. 2005, 68(1), pp. 43-56. ISSN 0378-4754. eISSN 1872-7166. Available under: doi: 10.1016/j.matcom.2004.09.002BibTex
@article{Venkiteswaran2005appro-25404, year={2005}, doi={10.1016/j.matcom.2004.09.002}, title={A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids}, number={1}, volume={68}, issn={0378-4754}, journal={Mathematics and Computers in Simulation}, pages={43--56}, author={Venkiteswaran, G. and Junk, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25404"> <dcterms:issued>2005</dcterms:issued> <dc:contributor>Venkiteswaran, G.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:bibliographicCitation>Mathematics and Computers in Simulation ; 68 (2005), 1. - S. 43-56</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-11T10:55:49Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25404"/> <dc:creator>Junk, Michael</dc:creator> <dcterms:abstract xml:lang="eng">A classical model used in the study of dynamics of polymeric liquids is the bead-spring chain representation of polymer molecules. The chain typically consists of a large number of beads and thus the state space V of its configuration, which is essentially the position of all the constituent beads, turns out to be high dimensional. The distribution function governing the configuration of a bead-spring chain undergoing shear flow is a Fokker–Planck equation on V. In this article, we present QMC methods for the approximate solution of the Fokker–Planck equation which are based on the time splitting technique to treat convection and diffusion separately. Convection is carried out by moving the particles along the characteristics and we apply the algorithms presented in [G. Venkiteswaran, M. Junk, QMC algorithms for diffusion equations in high dimensions, Math. Comput. Simul. 68 (2005) 23–41.] for diffusion. Altogether, we find that some of the QMC methods show reduced variance and thus slightly outperform standard MC.</dcterms:abstract> <dc:contributor>Junk, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-11T10:55:49Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>A QMC approach for high dimensional Fokker–Planck equations modelling polymeric liquids</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Venkiteswaran, G.</dc:creator> </rdf:Description> </rdf:RDF>