Publikation:

Empirical evaluation of no-reference VQA methods on a natural video quality database

Lade...
Vorschaubild

Dateien

Men_2-6ozepo9wxupa0.pdf
Men_2-6ozepo9wxupa0.pdfGröße: 95.84 KBDownloads: 521

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), May 29 - June 2, 2017, Erfurt, Germany, Proceedings. Piscataway, NJ: IEEE, 2017, 17011019. eISSN 2472-7814. ISBN 978-1-5386-4024-1. Available under: doi: 10.1109/QoMEX.2017.7965644

Zusammenfassung

No-Reference (NR) Video Quality Assessment (VQA) is a challenging task since it predicts the visual quality of a video sequence without comparison to some original reference video. Several NR-VQA methods have been proposed. However, all of them were designed and tested on databases with artificially distorted videos. Therefore, it remained an open question how well these NR-VQA methods perform for natural videos. We evaluated two popular VQA methods on our newly built natural VQA database KoNViD-1k. In addition, we found that merely combining five simple VQA-related features, i.e., contrast, colorfulness, blurriness, spatial information, and temporal information, already gave a performance about as well as those of the established NR-VQA methods. However, for all methods we found that they are unsatisfying when assessing natural videos (correlation coefficients below 0.6). These findings show that NR-VQA is not yet matured and in need of further substantial improvement.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

empirical evaluation, no-reference, video quality assessment, feature combination

Konferenz

2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), 31. Mai 2017 - 2. Juni 2017, Erfurt, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MEN, Hui, Hanhe LIN, Dietmar SAUPE, 2017. Empirical evaluation of no-reference VQA methods on a natural video quality database. 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX). Erfurt, Germany, 31. Mai 2017 - 2. Juni 2017. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), May 29 - June 2, 2017, Erfurt, Germany, Proceedings. Piscataway, NJ: IEEE, 2017, 17011019. eISSN 2472-7814. ISBN 978-1-5386-4024-1. Available under: doi: 10.1109/QoMEX.2017.7965644
BibTex
@inproceedings{Men2017-05Empir-41343,
  year={2017},
  doi={10.1109/QoMEX.2017.7965644},
  title={Empirical evaluation of no-reference VQA methods on a natural video quality database},
  isbn={978-1-5386-4024-1},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), May 29 - June 2, 2017, Erfurt, Germany, Proceedings},
  author={Men, Hui and Lin, Hanhe and Saupe, Dietmar},
  note={Article Number: 17011019}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41343">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T10:55:51Z</dc:date>
    <dc:contributor>Men, Hui</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41343/1/Men_2-6ozepo9wxupa0.pdf"/>
    <dc:creator>Men, Hui</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dcterms:issued>2017-05</dcterms:issued>
    <dcterms:title>Empirical evaluation of no-reference VQA methods on a natural video quality database</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41343"/>
    <dcterms:abstract xml:lang="eng">No-Reference (NR) Video Quality Assessment (VQA) is a challenging task since it predicts the visual quality of a video sequence without comparison to some original reference video. Several NR-VQA methods have been proposed. However, all of them were designed and tested on databases with artificially distorted videos. Therefore, it remained an open question how well these NR-VQA methods perform for natural videos. We evaluated two popular VQA methods on our newly built natural VQA database KoNViD-1k. In addition, we found that merely combining five simple VQA-related features, i.e., contrast, colorfulness, blurriness, spatial information, and temporal information, already gave a performance about as well as those of the established NR-VQA methods. However, for all methods we found that they are unsatisfying when assessing natural videos (correlation coefficients below 0.6). These findings show that NR-VQA is not yet matured and in need of further substantial improvement.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41343/1/Men_2-6ozepo9wxupa0.pdf"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T10:55:51Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen