Publikation: Recent trends in robot learning and evolution for swarm robotics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Swarm robotics is a promising approach to control large groups of robots. However, designing the individual behavior of the robots so that a desired collective behavior emerges is still a major challenge. In recent years, many advances in the automatic design of control software for robot swarms have been made, thus making automatic design a promising tool to address this challenge. In this article, I highlight and discuss recent advances and trends in offline robot evolution, embodied evolution, and offline robot learning for swarm robotics. For each approach, I describe recent design methods of interest, and commonly encountered challenges. In addition to the review, I provide a perspective on recent trends and discuss how they might influence future research to help address the remaining challenges of designing robot swarms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUCKLING, Jonas, 2023. Recent trends in robot learning and evolution for swarm robotics. In: Frontiers in Robotics and AI. Frontiers. 2023, 10, 1134841. eISSN 2296-9144. Verfügbar unter: doi: 10.3389/frobt.2023.1134841BibTex
@article{Kuckling2023-04-24Recen-71350, year={2023}, doi={10.3389/frobt.2023.1134841}, title={Recent trends in robot learning and evolution for swarm robotics}, volume={10}, journal={Frontiers in Robotics and AI}, author={Kuckling, Jonas}, note={Article Number: 1134841} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71350"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:issued>2023-04-24</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Kuckling, Jonas</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kuckling, Jonas</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-20T09:42:42Z</dcterms:available> <dcterms:abstract>Swarm robotics is a promising approach to control large groups of robots. However, designing the individual behavior of the robots so that a desired collective behavior emerges is still a major challenge. In recent years, many advances in the automatic design of control software for robot swarms have been made, thus making automatic design a promising tool to address this challenge. In this article, I highlight and discuss recent advances and trends in offline robot evolution, embodied evolution, and offline robot learning for swarm robotics. For each approach, I describe recent design methods of interest, and commonly encountered challenges. In addition to the review, I provide a perspective on recent trends and discuss how they might influence future research to help address the remaining challenges of designing robot swarms.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71350/4/Kuckling_2-6sghr7p0966n5.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71350"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-20T09:42:42Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:title>Recent trends in robot learning and evolution for swarm robotics</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71350/4/Kuckling_2-6sghr7p0966n5.pdf"/> </rdf:Description> </rdf:RDF>