Publikation:

Spectrahedral relaxations of hyperbolicity cones

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Let p be a real zero polynomial in n variables. Then p defines a rigidly convex set C(p). We construct a linear matrix inequality of size n+1 in the same n variables that depends only on the cubic part of p and defines a spectrahedron S(p) containing C(p). The proof of the containment uses the characterization of real zero polynomials in two variables by Helton and Vinnikov. We exhibit many cases where C(p)=S(p). In terms of optimization theory, we introduce a small semidefinite relaxation of a potentially huge hyperbolic program. If the hyperbolic program is a linear program, we introduce even a finitely convergent hierachy of semidefinite relaxations. With some extra work, we discuss the homogeneous setup where real zero polynomials correspond to homogeneous polynomials and rigidly convex sets correspond to hyperbolicity cones. The main aim of our construction is to attack the generalized Lax conjecture saying that C(p) is always a spectrahedron. To this end, we conjecture that real zero polynomials in fixed degree can be "amalgamated" and show it in three special cases with three completely different proofs. We show that this conjecture would imply the following partial result towards the generalized Lax conjecture: Given finitely many planes in Rn, there is a spectrahedron containing C(p) that coincides with C(p) on each of these planes. This uses again the result of Helton and Vinnikov.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHWEIGHOFER, Markus, 2020. Spectrahedral relaxations of hyperbolicity cones
BibTex
@unpublished{Schweighofer2020Spect-55988,
  year={2020},
  title={Spectrahedral relaxations of hyperbolicity cones},
  author={Schweighofer, Markus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55988">
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Schweighofer, Markus</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T11:39:53Z</dc:date>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:title>Spectrahedral relaxations of hyperbolicity cones</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55988"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Let p be a real zero polynomial in n variables. Then p defines a rigidly convex set C(p). We construct a linear matrix inequality of size n+1 in the same n variables that depends only on the cubic part of p and defines a spectrahedron S(p) containing C(p). The proof of the containment uses the characterization of real zero polynomials in two variables by Helton and Vinnikov. We exhibit many cases where C(p)=S(p). In terms of optimization theory, we introduce a small semidefinite relaxation of a potentially huge hyperbolic program. If the hyperbolic program is a linear program, we introduce even a finitely convergent hierachy of semidefinite relaxations. With some extra work, we discuss the homogeneous setup where real zero polynomials correspond to homogeneous polynomials and rigidly convex sets correspond to hyperbolicity cones. The main aim of our construction is to attack the generalized Lax conjecture saying that C(p) is always a spectrahedron. To this end, we conjecture that real zero polynomials in fixed degree can be "amalgamated" and show it in three special cases with three completely different proofs. We show that this conjecture would imply the following partial result towards the generalized Lax conjecture: Given finitely many planes in Rn, there is a spectrahedron containing C(p) that coincides with C(p) on each of these planes. This uses again the result of Helton and Vinnikov.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T11:39:53Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen