Publikation: On estimation of mean and covariance functions in repeated time series with long-memory errors
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Lithuanian Mathematical Journal. 2014, 54(1), pp. 8-34. ISSN 0363-1672. eISSN 1573-8825. Available under: doi: 10.1007/s10986-014-9224-1
Zusammenfassung
We consider kernel estimation of trend and covariance functions in models typically encountered in functional data analysis (FDA), with the modification that the random curves are perturbed by error processes that exhibit short- or long-range dependence. Uniform convergence of standardized maximal differences between estimated and true (trend and covariance) functions is established. For the covariance function, a transformation based on contrasts is proposed that does not require explicit trend estimation. Improved estimators can be obtained by using higher-order kernels.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
long-range dependence, kernel estimation, repeated time series, covariance function, higher-order kernels, functional limit theorem
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, Haiyan LIU, 2014. On estimation of mean and covariance functions in repeated time series with long-memory errors. In: Lithuanian Mathematical Journal. 2014, 54(1), pp. 8-34. ISSN 0363-1672. eISSN 1573-8825. Available under: doi: 10.1007/s10986-014-9224-1BibTex
@article{Beran2014estim-29159, year={2014}, doi={10.1007/s10986-014-9224-1}, title={On estimation of mean and covariance functions in repeated time series with long-memory errors}, number={1}, volume={54}, issn={0363-1672}, journal={Lithuanian Mathematical Journal}, pages={8--34}, author={Beran, Jan and Liu, Haiyan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29159"> <dc:creator>Beran, Jan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29159"/> <dcterms:issued>2014</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We consider kernel estimation of trend and covariance functions in models typically encountered in functional data analysis (FDA), with the modification that the random curves are perturbed by error processes that exhibit short- or long-range dependence. Uniform convergence of standardized maximal differences between estimated and true (trend and covariance) functions is established. For the covariance function, a transformation based on contrasts is proposed that does not require explicit trend estimation. Improved estimators can be obtained by using higher-order kernels.</dcterms:abstract> <dcterms:title>On estimation of mean and covariance functions in repeated time series with long-memory errors</dcterms:title> <dc:creator>Liu, Haiyan</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-21T10:49:07Z</dc:date> <dc:contributor>Beran, Jan</dc:contributor> <dc:contributor>Liu, Haiyan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-21T10:49:07Z</dcterms:available> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja