Publikation:

An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results

Lade...
Vorschaubild

Dateien

Gao_2009_InteractiveApproach.pdf
Gao_2009_InteractiveApproach.pdfGröße: 4.82 MBDownloads: 330

Datum

2009

Autor:innen

Gao, Yuli
Peng, Jinye
Luo, Hangzai
Fan, Jianping

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Circuits and systems for VideoTechnology. 2009, 19(12), pp. 1851-1865. Available under: doi: 10.1109/TCSVT.2009.2026968

Zusammenfassung

Keyword-based Google Images search engine is now becoming very popular for online image search. Unfortunately, only the text terms that are explicitly or implicitly linked with the images are used for image indexing and the associated text terms may not have exact correspondence with the underlying image semantics, thus the keyword-based Google Images search engine may return large amounts of junk images which are irrelevant to the given keyword-based queries. Based on this observation, we have developed an interactive approach to filter out the junk images from keyword-based Google Images search results and our approach consists of the following major components: (a) A kernel-based image clustering technique is developed to partition the returned images into multiple clusters and outliers. (b) Hyperbolic visualization is incorporated to display large amounts of returned images according to their nonlinear visual similarity contexts, so that users can assess the relevance between the returned images and their real query intentions interactively and select one or multiple images to express their query intentions and personal preferences precisely. (c) An incremental kernel learning algorithm is developed to translate the users' query intentions and personal preferences for updating the mixtureof-kernels and generating better hypotheses to achieve more accurate clustering of the returned images and filter out the junk images more effectively. Experiments on diverse keyword-based queries from Google Images search engine have obtained very positive results. Our junk image filtering system is released for public evaluation at: http://www.cs.uncc.edu/r .. .j/an/google_demol.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Junk image filtering, mixture-of-kernels, incremental kernel learning, hyperbolic image visualization, user-system interaction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GAO, Yuli, Jinye PENG, Hangzai LUO, Daniel A. KEIM, Jianping FAN, 2009. An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results. In: IEEE Transactions on Circuits and systems for VideoTechnology. 2009, 19(12), pp. 1851-1865. Available under: doi: 10.1109/TCSVT.2009.2026968
BibTex
@article{Gao2009Inter-5751,
  year={2009},
  doi={10.1109/TCSVT.2009.2026968},
  title={An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results},
  number={12},
  volume={19},
  journal={IEEE Transactions on Circuits and systems for VideoTechnology},
  pages={1851--1865},
  author={Gao, Yuli and Peng, Jinye and Luo, Hangzai and Keim, Daniel A. and Fan, Jianping}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5751">
    <dcterms:title>An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5751/1/Gao_2009_InteractiveApproach.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Fan, Jianping</dc:creator>
    <dc:contributor>Peng, Jinye</dc:contributor>
    <dcterms:issued>2009</dcterms:issued>
    <dc:creator>Luo, Hangzai</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5751"/>
    <dc:creator>Gao, Yuli</dc:creator>
    <dc:contributor>Gao, Yuli</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract xml:lang="eng">Keyword-based Google Images search engine is now becoming very popular for online image search. Unfortunately, only the text terms that are explicitly or implicitly linked with the images are used for image indexing and the associated text terms may not have exact correspondence with the underlying image semantics, thus the keyword-based Google Images search engine may return large amounts of junk images which are irrelevant to the given keyword-based queries. Based on this observation, we have developed an interactive approach to filter out the junk images from keyword-based Google Images search results and our approach consists of the following major components: (a) A kernel-based image clustering technique is developed to partition the returned images into multiple clusters and outliers. (b) Hyperbolic visualization is incorporated to display large amounts of returned images according to their nonlinear visual similarity contexts, so that users can assess the relevance between the returned images and their real query intentions interactively and select one or multiple images to express their query intentions and personal preferences precisely. (c) An incremental kernel learning algorithm is developed to translate the users' query intentions and personal preferences for updating the mixtureof-kernels and generating better hypotheses to achieve more accurate clustering of the returned images and filter out the junk images more effectively. Experiments on diverse keyword-based queries from Google Images search engine have obtained very positive results. Our junk image filtering system is released for public evaluation at: http://www.cs.uncc.edu/r .. .j/an/google_demol.</dcterms:abstract>
    <dc:contributor>Luo, Hangzai</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Peng, Jinye</dc:creator>
    <dc:contributor>Fan, Jianping</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>First publ in: IEEE Transactions on Circuits and systems for VideoTechnology  19 (2009), 12, pp. 1851-1865</dcterms:bibliographicCitation>
    <dc:format>application/pdf</dc:format>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5751/1/Gao_2009_InteractiveApproach.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen