Publikation: An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Keyword-based Google Images search engine is now becoming very popular for online image search. Unfortunately, only the text terms that are explicitly or implicitly linked with the images are used for image indexing and the associated text terms may not have exact correspondence with the underlying image semantics, thus the keyword-based Google Images search engine may return large amounts of junk images which are irrelevant to the given keyword-based queries. Based on this observation, we have developed an interactive approach to filter out the junk images from keyword-based Google Images search results and our approach consists of the following major components: (a) A kernel-based image clustering technique is developed to partition the returned images into multiple clusters and outliers. (b) Hyperbolic visualization is incorporated to display large amounts of returned images according to their nonlinear visual similarity contexts, so that users can assess the relevance between the returned images and their real query intentions interactively and select one or multiple images to express their query intentions and personal preferences precisely. (c) An incremental kernel learning algorithm is developed to translate the users' query intentions and personal preferences for updating the mixtureof-kernels and generating better hypotheses to achieve more accurate clustering of the returned images and filter out the junk images more effectively. Experiments on diverse keyword-based queries from Google Images search engine have obtained very positive results. Our junk image filtering system is released for public evaluation at: http://www.cs.uncc.edu/r .. .j/an/google_demol.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GAO, Yuli, Jinye PENG, Hangzai LUO, Daniel A. KEIM, Jianping FAN, 2009. An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results. In: IEEE Transactions on Circuits and systems for VideoTechnology. 2009, 19(12), pp. 1851-1865. Available under: doi: 10.1109/TCSVT.2009.2026968BibTex
@article{Gao2009Inter-5751, year={2009}, doi={10.1109/TCSVT.2009.2026968}, title={An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results}, number={12}, volume={19}, journal={IEEE Transactions on Circuits and systems for VideoTechnology}, pages={1851--1865}, author={Gao, Yuli and Peng, Jinye and Luo, Hangzai and Keim, Daniel A. and Fan, Jianping} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5751"> <dcterms:title>An Interactive Approach for Filtering out Junk Images from Keyword Based Google Search Results</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5751/1/Gao_2009_InteractiveApproach.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Fan, Jianping</dc:creator> <dc:contributor>Peng, Jinye</dc:contributor> <dcterms:issued>2009</dcterms:issued> <dc:creator>Luo, Hangzai</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:48Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5751"/> <dc:creator>Gao, Yuli</dc:creator> <dc:contributor>Gao, Yuli</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">Keyword-based Google Images search engine is now becoming very popular for online image search. Unfortunately, only the text terms that are explicitly or implicitly linked with the images are used for image indexing and the associated text terms may not have exact correspondence with the underlying image semantics, thus the keyword-based Google Images search engine may return large amounts of junk images which are irrelevant to the given keyword-based queries. Based on this observation, we have developed an interactive approach to filter out the junk images from keyword-based Google Images search results and our approach consists of the following major components: (a) A kernel-based image clustering technique is developed to partition the returned images into multiple clusters and outliers. (b) Hyperbolic visualization is incorporated to display large amounts of returned images according to their nonlinear visual similarity contexts, so that users can assess the relevance between the returned images and their real query intentions interactively and select one or multiple images to express their query intentions and personal preferences precisely. (c) An incremental kernel learning algorithm is developed to translate the users' query intentions and personal preferences for updating the mixtureof-kernels and generating better hypotheses to achieve more accurate clustering of the returned images and filter out the junk images more effectively. Experiments on diverse keyword-based queries from Google Images search engine have obtained very positive results. Our junk image filtering system is released for public evaluation at: http://www.cs.uncc.edu/r .. .j/an/google_demol.</dcterms:abstract> <dc:contributor>Luo, Hangzai</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Peng, Jinye</dc:creator> <dc:contributor>Fan, Jianping</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>First publ in: IEEE Transactions on Circuits and systems for VideoTechnology 19 (2009), 12, pp. 1851-1865</dcterms:bibliographicCitation> <dc:format>application/pdf</dc:format> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5751/1/Gao_2009_InteractiveApproach.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> </rdf:Description> </rdf:RDF>