Publikation:

Supporting read-across using biological data

Lade...
Vorschaubild

Dateien

Zhu_2--73off4t217854.pdf
Zhu_2--73off4t217854.pdfGröße: 1.78 MBDownloads: 1066

Datum

2016

Autor:innen

Zhu, Hao
Bouhifd, Mounir
Donley, Elizabeth
Egnash, Laura
Kleinstreuer, Nicole
Kroese, E. Dinant
Liu, Zhichao
Luechtefeld, Thomas
Palmer, Jessica
Pamies, David

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ALTEX. 2016, 33(2), pp. 167-182. ISSN 1868-596X. eISSN 1868-596X. Available under: doi: 10.14573/altex.1601252

Zusammenfassung

Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA's ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHU, Hao, Mounir BOUHIFD, Elizabeth DONLEY, Laura EGNASH, Nicole KLEINSTREUER, E. Dinant KROESE, Zhichao LIU, Thomas LUECHTEFELD, Jessica PALMER, David PAMIES, Jie SHEN, Volker STRAUSS, Shengde WU, Thomas HARTUNG, 2016. Supporting read-across using biological data. In: ALTEX. 2016, 33(2), pp. 167-182. ISSN 1868-596X. eISSN 1868-596X. Available under: doi: 10.14573/altex.1601252
BibTex
@article{Zhu2016Suppo-40486,
  year={2016},
  doi={10.14573/altex.1601252},
  title={Supporting read-across using biological data},
  number={2},
  volume={33},
  issn={1868-596X},
  journal={ALTEX},
  pages={167--182},
  author={Zhu, Hao and Bouhifd, Mounir and Donley, Elizabeth and Egnash, Laura and Kleinstreuer, Nicole and Kroese, E. Dinant and Liu, Zhichao and Luechtefeld, Thomas and Palmer, Jessica and Pamies, David and Shen, Jie and Strauss, Volker and Wu, Shengde and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40486">
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dc:contributor>Zhu, Hao</dc:contributor>
    <dc:creator>Bouhifd, Mounir</dc:creator>
    <dc:contributor>Pamies, David</dc:contributor>
    <dc:contributor>Luechtefeld, Thomas</dc:contributor>
    <dc:creator>Strauss, Volker</dc:creator>
    <dc:creator>Hartung, Thomas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Luechtefeld, Thomas</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Strauss, Volker</dc:contributor>
    <dc:contributor>Wu, Shengde</dc:contributor>
    <dc:creator>Donley, Elizabeth</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Pamies, David</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40486/1/Zhu_2--73off4t217854.pdf"/>
    <dc:contributor>Donley, Elizabeth</dc:contributor>
    <dc:contributor>Liu, Zhichao</dc:contributor>
    <dc:creator>Kroese, E. Dinant</dc:creator>
    <dc:contributor>Egnash, Laura</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Supporting read-across using biological data</dcterms:title>
    <dc:contributor>Palmer, Jessica</dc:contributor>
    <dc:creator>Kleinstreuer, Nicole</dc:creator>
    <dc:contributor>Shen, Jie</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40486/1/Zhu_2--73off4t217854.pdf"/>
    <dc:creator>Egnash, Laura</dc:creator>
    <dc:creator>Zhu, Hao</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Kroese, E. Dinant</dc:contributor>
    <dc:creator>Shen, Jie</dc:creator>
    <dc:creator>Palmer, Jessica</dc:creator>
    <dc:creator>Liu, Zhichao</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T13:26:08Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40486"/>
    <dc:creator>Wu, Shengde</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T13:26:08Z</dcterms:available>
    <dc:contributor>Kleinstreuer, Nicole</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Bouhifd, Mounir</dc:contributor>
    <dcterms:abstract xml:lang="eng">Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA's ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen