Publikation: Supporting read-across using biological data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA's ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHU, Hao, Mounir BOUHIFD, Elizabeth DONLEY, Laura EGNASH, Nicole KLEINSTREUER, E. Dinant KROESE, Zhichao LIU, Thomas LUECHTEFELD, Jessica PALMER, David PAMIES, Jie SHEN, Volker STRAUSS, Shengde WU, Thomas HARTUNG, 2016. Supporting read-across using biological data. In: ALTEX. 2016, 33(2), pp. 167-182. ISSN 1868-596X. eISSN 1868-596X. Available under: doi: 10.14573/altex.1601252BibTex
@article{Zhu2016Suppo-40486, year={2016}, doi={10.14573/altex.1601252}, title={Supporting read-across using biological data}, number={2}, volume={33}, issn={1868-596X}, journal={ALTEX}, pages={167--182}, author={Zhu, Hao and Bouhifd, Mounir and Donley, Elizabeth and Egnash, Laura and Kleinstreuer, Nicole and Kroese, E. Dinant and Liu, Zhichao and Luechtefeld, Thomas and Palmer, Jessica and Pamies, David and Shen, Jie and Strauss, Volker and Wu, Shengde and Hartung, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40486"> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:contributor>Zhu, Hao</dc:contributor> <dc:creator>Bouhifd, Mounir</dc:creator> <dc:contributor>Pamies, David</dc:contributor> <dc:contributor>Luechtefeld, Thomas</dc:contributor> <dc:creator>Strauss, Volker</dc:creator> <dc:creator>Hartung, Thomas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Luechtefeld, Thomas</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Strauss, Volker</dc:contributor> <dc:contributor>Wu, Shengde</dc:contributor> <dc:creator>Donley, Elizabeth</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Pamies, David</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40486/1/Zhu_2--73off4t217854.pdf"/> <dc:contributor>Donley, Elizabeth</dc:contributor> <dc:contributor>Liu, Zhichao</dc:contributor> <dc:creator>Kroese, E. Dinant</dc:creator> <dc:contributor>Egnash, Laura</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Supporting read-across using biological data</dcterms:title> <dc:contributor>Palmer, Jessica</dc:contributor> <dc:creator>Kleinstreuer, Nicole</dc:creator> <dc:contributor>Shen, Jie</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/40486/1/Zhu_2--73off4t217854.pdf"/> <dc:creator>Egnash, Laura</dc:creator> <dc:creator>Zhu, Hao</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Kroese, E. Dinant</dc:contributor> <dc:creator>Shen, Jie</dc:creator> <dc:creator>Palmer, Jessica</dc:creator> <dc:creator>Liu, Zhichao</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T13:26:08Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40486"/> <dc:creator>Wu, Shengde</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T13:26:08Z</dcterms:available> <dc:contributor>Kleinstreuer, Nicole</dc:contributor> <dcterms:issued>2016</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Bouhifd, Mounir</dc:contributor> <dcterms:abstract xml:lang="eng">Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA's ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.</dcterms:abstract> </rdf:Description> </rdf:RDF>