Publikation: fastFM : a library for factorization machines
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Machine Learning Research (JMLR). 2016, 17(1), pp. 6393-6397. ISSN 1532-4435. eISSN 1533-7928
Zusammenfassung
Factorization Machines (FM) are currently only used in a narrow range of applications and are not yet part of the standard machine learning toolbox, despite their great success in collaborative filtering and click-through rate prediction. However, Factorization Machines are a general model to deal with sparse and high dimensional features. Our Factorization Machine implementation (fastFM) provides easy access to many solvers and supports regression, classification and ranking tasks. Such an implementation simplifies the use of FM for a wide range of applications. Therefore, our implementation has the potential to improve understanding of the FM model and drive new development.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Python, MCMC, matrix factorization, context-aware recommendation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BAYER, Immanuel, 2016. fastFM : a library for factorization machines. In: Journal of Machine Learning Research (JMLR). 2016, 17(1), pp. 6393-6397. ISSN 1532-4435. eISSN 1533-7928BibTex
@article{Bayer2016fastF-37432, year={2016}, title={fastFM : a library for factorization machines}, number={1}, volume={17}, issn={1532-4435}, journal={Journal of Machine Learning Research (JMLR)}, pages={6393--6397}, author={Bayer, Immanuel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37432"> <dc:creator>Bayer, Immanuel</dc:creator> <dc:language>eng</dc:language> <dcterms:title>fastFM : a library for factorization machines</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2016</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37432"/> <dc:contributor>Bayer, Immanuel</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-15T09:57:36Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-15T09:57:36Z</dc:date> <dcterms:abstract xml:lang="eng">Factorization Machines (FM) are currently only used in a narrow range of applications and are not yet part of the standard machine learning toolbox, despite their great success in collaborative filtering and click-through rate prediction. However, Factorization Machines are a general model to deal with sparse and high dimensional features. Our Factorization Machine implementation (fastFM) provides easy access to many solvers and supports regression, classification and ranking tasks. Such an implementation simplifies the use of FM for a wide range of applications. Therefore, our implementation has the potential to improve understanding of the FM model and drive new development.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja