Publikation:

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Tkatchenko, Alexandre
Müller, Klaus-Robert
von Lilienfeld, O. Anatole

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review Letters. American Physical Society (APS). 2012, 108(5), 058301. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.058301

Zusammenfassung

We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of ∼10  kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RUPP, Matthias, Alexandre TKATCHENKO, Klaus-Robert MÜLLER, O. Anatole VON LILIENFELD, 2012. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. In: Physical Review Letters. American Physical Society (APS). 2012, 108(5), 058301. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.108.058301
BibTex
@article{Rupp2012-02-03Accur-52138,
  year={2012},
  doi={10.1103/PhysRevLett.108.058301},
  title={Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning},
  number={5},
  volume={108},
  issn={0031-9007},
  journal={Physical Review Letters},
  author={Rupp, Matthias and Tkatchenko, Alexandre and Müller, Klaus-Robert and von Lilienfeld, O. Anatole},
  note={Article Number: 058301}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52138">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Tkatchenko, Alexandre</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:05:09Z</dcterms:available>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52138"/>
    <dc:creator>von Lilienfeld, O. Anatole</dc:creator>
    <dc:creator>Tkatchenko, Alexandre</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:05:09Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dcterms:abstract xml:lang="eng">We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrödinger equation is mapped onto a nonlinear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross validation over more than seven thousand organic molecules yields a mean absolute error of ∼10  kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2012-02-03</dcterms:issued>
    <dcterms:title>Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen