Publikation:

Hierarchy of Transportation Network Parameters and Hardness Results

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

JANSEN, Bart M. P., ed., Jan Arne TELLE, ed.. 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Wadern: Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2019, 4. Leibniz International Proceedings in Informatics (LIPIcs). 148. eISSN 1868-8969. ISBN 978-3-95977-129-0. Available under: doi: 10.4230/LIPIcs.IPEC.2019.4

Zusammenfassung

The graph parameters highway dimension and skeleton dimension were introduced to capture the properties of transportation networks. As many important optimization problems like Travelling Salesperson, Steiner Tree or k-Center arise in such networks, it is worthwhile to study them on graphs of bounded highway or skeleton dimension. We investigate the relationships between mentioned parameters and how they are related to other important graph parameters that have been applied successfully to various optimization problems. We show that the skeleton dimension is incomparable to any of the parameters distance to linear forest, bandwidth, treewidth and highway dimension and hence, it is worthwhile to study mentioned problems also on graphs of bounded skeleton dimension. Moreover, we prove that the skeleton dimension is upper bounded by the max leaf number and that for any graph on at least three vertices there are edge weights such that both parameters are equal. Then we show that computing the highway dimension according to most recent definition is NP-hard, which answers an open question stated by Feldmann et al. [18]. Finally we prove that on graphs G = (V,E) of skeleton dimension O(log2 |V|) it is NP-hard to approximate the k-Center problem within a factor less than 2.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Graph Parameters, Skeleton Dimension, Highway Dimension, k-Center

Konferenz

14th International Symposium on Parameterized and Exact Computation (IPEC 2019), 11. Sept. 2019 - 13. Sept. 2019, Munich, Germany
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLUM, Johannes, 2019. Hierarchy of Transportation Network Parameters and Hardness Results. 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Munich, Germany, 11. Sept. 2019 - 13. Sept. 2019. In: JANSEN, Bart M. P., ed., Jan Arne TELLE, ed.. 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Wadern: Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2019, 4. Leibniz International Proceedings in Informatics (LIPIcs). 148. eISSN 1868-8969. ISBN 978-3-95977-129-0. Available under: doi: 10.4230/LIPIcs.IPEC.2019.4
BibTex
@inproceedings{Blum2019Hiera-48312,
  year={2019},
  doi={10.4230/LIPIcs.IPEC.2019.4},
  title={Hierarchy of Transportation Network Parameters and Hardness Results},
  number={148},
  isbn={978-3-95977-129-0},
  publisher={Schloss Dagstuhl, Leibniz-Zentrum für Informatik},
  address={Wadern},
  series={Leibniz International Proceedings in Informatics (LIPIcs)},
  booktitle={14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  editor={Jansen, Bart M. P. and Telle, Jan Arne},
  author={Blum, Johannes},
  note={Article Number: 4}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48312">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Blum, Johannes</dc:creator>
    <dc:contributor>Blum, Johannes</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T13:16:28Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48312"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2019</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Hierarchy of Transportation Network Parameters and Hardness Results</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">The graph parameters highway dimension and skeleton dimension were introduced to capture the properties of transportation networks. As many important optimization problems like Travelling Salesperson, Steiner Tree or k-Center arise in such networks, it is worthwhile to study them on graphs of bounded highway or skeleton dimension. We investigate the relationships between mentioned parameters and how they are related to other important graph parameters that have been applied successfully to various optimization problems. We show that the skeleton dimension is incomparable to any of the parameters distance to linear forest, bandwidth, treewidth and highway dimension and hence, it is worthwhile to study mentioned problems also on graphs of bounded skeleton dimension. Moreover, we prove that the skeleton dimension is upper bounded by the max leaf number and that for any graph on at least three vertices there are edge weights such that both parameters are equal. Then we show that computing the highway dimension according to most recent definition is NP-hard, which answers an open question stated by Feldmann et al. [18]. Finally we prove that on graphs G = (V,E) of skeleton dimension O(log&lt;sup&gt;2&lt;/sup&gt; |V|) it is NP-hard to approximate the k-Center problem within a factor less than 2.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-21T13:16:28Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen