Growth strategy for solution-phase growth of two-dimensional nanomaterials via a unified model
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Two-dimensional (2D) materials prepared by a solution-phase growth route exhibit many unique properties and are promising for use in various fields. However, simple, rational and green fabrication of target materials remains challenging due to the lack of guiding principles. Here we propose a universal qualitative model for 2D materials grown for layered and non-layered crystal structures by a solution-phase growth route; both theoretical simulation and experimental results confirm the model’s validity. This model demonstrates that 2D growth can be controlled by only tuning the reaction concentration and temperature, and has been applied to fabricate more than 30 different 2D nanomaterials in water at room temperature and in the absence of additives. Furthermore, the model shows promise for optimizing the experimental design of numerous other 2D nanomaterials.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHEN, Zongkun, Ralf SCHMID, Xingkun WANG, Mengqi FU, Zhongkang HAN, Qiqi FAN, Elke SCHEER, Minghua HUANG, Peter NIELABA, Helmut CÖLFEN, 2023. Growth strategy for solution-phase growth of two-dimensional nanomaterials via a unified model. In: Nature Synthesis. Springer. 2023, 2(7), pp. 670-677. eISSN 2731-0582. Available under: doi: 10.1038/s44160-023-00281-yBibTex
@article{Chen2023-03-30Growt-66564, year={2023}, doi={10.1038/s44160-023-00281-y}, title={Growth strategy for solution-phase growth of two-dimensional nanomaterials via a unified model}, number={7}, volume={2}, journal={Nature Synthesis}, pages={670--677}, author={Chen, Zongkun and Schmid, Ralf and Wang, Xingkun and Fu, Mengqi and Han, Zhongkang and Fan, Qiqi and Scheer, Elke and Huang, Minghua and Nielaba, Peter and Cölfen, Helmut} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66564"> <dc:creator>Schmid, Ralf</dc:creator> <dcterms:abstract>Two-dimensional (2D) materials prepared by a solution-phase growth route exhibit many unique properties and are promising for use in various fields. However, simple, rational and green fabrication of target materials remains challenging due to the lack of guiding principles. Here we propose a universal qualitative model for 2D materials grown for layered and non-layered crystal structures by a solution-phase growth route; both theoretical simulation and experimental results confirm the model’s validity. This model demonstrates that 2D growth can be controlled by only tuning the reaction concentration and temperature, and has been applied to fabricate more than 30 different 2D nanomaterials in water at room temperature and in the absence of additives. Furthermore, the model shows promise for optimizing the experimental design of numerous other 2D nanomaterials.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T13:28:02Z</dcterms:available> <dc:contributor>Huang, Minghua</dc:contributor> <dc:contributor>Wang, Xingkun</dc:contributor> <dc:contributor>Nielaba, Peter</dc:contributor> <dc:contributor>Chen, Zongkun</dc:contributor> <dc:contributor>Fan, Qiqi</dc:contributor> <dc:contributor>Cölfen, Helmut</dc:contributor> <dc:creator>Chen, Zongkun</dc:creator> <dc:contributor>Scheer, Elke</dc:contributor> <dc:creator>Scheer, Elke</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Schmid, Ralf</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Nielaba, Peter</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Fu, Mengqi</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-12T13:28:02Z</dc:date> <dcterms:title>Growth strategy for solution-phase growth of two-dimensional nanomaterials via a unified model</dcterms:title> <dc:creator>Wang, Xingkun</dc:creator> <dc:creator>Huang, Minghua</dc:creator> <dcterms:issued>2023-03-30</dcterms:issued> <dc:creator>Han, Zhongkang</dc:creator> <dc:creator>Fan, Qiqi</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66564"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Cölfen, Helmut</dc:creator> <dc:creator>Fu, Mengqi</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Han, Zhongkang</dc:contributor> </rdf:Description> </rdf:RDF>