Publikation:

COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms

Lade...
Vorschaubild

Dateien

Ostaszewski_2-7divik1063rv1.pdf
Ostaszewski_2-7divik1063rv1.pdfGröße: 4.48 MBDownloads: 315

Datum

2021

Autor:innen

Ostaszewski, Marek
Glaab, Enrico
Ruepp, Andreas
Fobo, Gisela
Montrone, Corinna
Brauner, Barbara
Frishman, Goar
Monraz Gómez, Luis Cristóbal
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Molecular systems biology. Wiley. 2021, 17(10), e10387. eISSN 1744-4292. Available under: doi: 10.15252/msb.202110387

Zusammenfassung

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

computable knowledge repository; large-scale biocuration; omics data analysis; open access community effort; systems biomedicine

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690OSTASZEWSKI, Marek, Enrico GLAAB, Andreas RUEPP, Gisela FOBO, Corinna MONTRONE, Barbara BRAUNER, Goar FRISHMAN, Luis Cristóbal MONRAZ GÓMEZ, Hanna BORLINGHAUS, Falk SCHREIBER, 2021. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. In: Molecular systems biology. Wiley. 2021, 17(10), e10387. eISSN 1744-4292. Available under: doi: 10.15252/msb.202110387
BibTex
@article{Ostaszewski2021-10COVID-55338,
  year={2021},
  doi={10.15252/msb.202110387},
  title={COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms},
  number={10},
  volume={17},
  journal={Molecular systems biology},
  author={Ostaszewski, Marek and Glaab, Enrico and Ruepp, Andreas and Fobo, Gisela and Montrone, Corinna and Brauner, Barbara and Frishman, Goar and Monraz Gómez, Luis Cristóbal and Borlinghaus, Hanna and Schreiber, Falk},
  note={Article Number: e10387}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55338">
    <dc:creator>Montrone, Corinna</dc:creator>
    <dc:creator>Glaab, Enrico</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55338/1/Ostaszewski_2-7divik1063rv1.pdf"/>
    <dc:contributor>Borlinghaus, Hanna</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Frishman, Goar</dc:contributor>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms</dcterms:title>
    <dc:contributor>Fobo, Gisela</dc:contributor>
    <dc:creator>Ruepp, Andreas</dc:creator>
    <dc:creator>Ostaszewski, Marek</dc:creator>
    <dc:creator>Fobo, Gisela</dc:creator>
    <dc:contributor>Glaab, Enrico</dc:contributor>
    <dcterms:issued>2021-10</dcterms:issued>
    <dc:contributor>Monraz Gómez, Luis Cristóbal</dc:contributor>
    <dc:creator>Brauner, Barbara</dc:creator>
    <dc:contributor>Montrone, Corinna</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-25T09:48:11Z</dc:date>
    <dc:creator>Monraz Gómez, Luis Cristóbal</dc:creator>
    <dc:contributor>Ostaszewski, Marek</dc:contributor>
    <dc:creator>Frishman, Goar</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55338"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55338/1/Ostaszewski_2-7divik1063rv1.pdf"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Brauner, Barbara</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-25T09:48:11Z</dcterms:available>
    <dc:creator>Borlinghaus, Hanna</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Ruepp, Andreas</dc:contributor>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dcterms:abstract xml:lang="eng">We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen