Publikation: COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
OSTASZEWSKI, Marek, Enrico GLAAB, Andreas RUEPP, Gisela FOBO, Corinna MONTRONE, Barbara BRAUNER, Goar FRISHMAN, Luis Cristóbal MONRAZ GÓMEZ, Hanna BORLINGHAUS, Falk SCHREIBER, 2021. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. In: Molecular systems biology. Wiley. 2021, 17(10), e10387. eISSN 1744-4292. Available under: doi: 10.15252/msb.202110387BibTex
@article{Ostaszewski2021-10COVID-55338, year={2021}, doi={10.15252/msb.202110387}, title={COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms}, number={10}, volume={17}, journal={Molecular systems biology}, author={Ostaszewski, Marek and Glaab, Enrico and Ruepp, Andreas and Fobo, Gisela and Montrone, Corinna and Brauner, Barbara and Frishman, Goar and Monraz Gómez, Luis Cristóbal and Borlinghaus, Hanna and Schreiber, Falk}, note={Article Number: e10387} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55338"> <dc:creator>Montrone, Corinna</dc:creator> <dc:creator>Glaab, Enrico</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55338/1/Ostaszewski_2-7divik1063rv1.pdf"/> <dc:contributor>Borlinghaus, Hanna</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Frishman, Goar</dc:contributor> <dc:creator>Schreiber, Falk</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms</dcterms:title> <dc:contributor>Fobo, Gisela</dc:contributor> <dc:creator>Ruepp, Andreas</dc:creator> <dc:creator>Ostaszewski, Marek</dc:creator> <dc:creator>Fobo, Gisela</dc:creator> <dc:contributor>Glaab, Enrico</dc:contributor> <dcterms:issued>2021-10</dcterms:issued> <dc:contributor>Monraz Gómez, Luis Cristóbal</dc:contributor> <dc:creator>Brauner, Barbara</dc:creator> <dc:contributor>Montrone, Corinna</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-25T09:48:11Z</dc:date> <dc:creator>Monraz Gómez, Luis Cristóbal</dc:creator> <dc:contributor>Ostaszewski, Marek</dc:contributor> <dc:creator>Frishman, Goar</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55338"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55338/1/Ostaszewski_2-7divik1063rv1.pdf"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Brauner, Barbara</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-25T09:48:11Z</dcterms:available> <dc:creator>Borlinghaus, Hanna</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Ruepp, Andreas</dc:contributor> <dc:contributor>Schreiber, Falk</dc:contributor> <dcterms:abstract xml:lang="eng">We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.</dcterms:abstract> </rdf:Description> </rdf:RDF>