Publikation:

Sparse convolutional coding for neuronal assembly detection

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Peter, Sven
Kirschbaum, Elke
Both, Martin
Campbell, Lee
Harvey, Brandon
Durstewitz, Daniel
Diego, Ferran
Hamprecht, Fred A.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GUYON, Isabelle, ed., Ulrike VON LUXBURG, ed., Samy BENGIO, ed. and others. Advances in Neural Information Processing Systems 30 (NIPS 2017). 2017

Zusammenfassung

Cell assemblies, originally proposed by Donald Hebb (1949), are subsets of neurons firing in a temporally coordinated way that gives rise to repeated motifs supposed to underly neural representations and information processing. Although Hebb's original proposal dates back many decades, the detection of assemblies and their role in coding is still an open and current research topic, partly because simultaneous recordings from large populations of neurons became feasible only relatively recently. Most current and easy-to-apply computational techniques focus on the identification of strictly synchronously spiking neurons. In this paper we propose a new algorithm, based on sparse convolutional coding, for detecting recurrent motifs of arbitrary structure up to a given length. Testing of our algorithm on synthetically generated datasets shows that it outperforms established methods and accurately identifies the temporal structure of embedded assemblies, even when these contain overlapping neurons or when strong background noise is present. Moreover, exploratory analysis of experimental datasets from hippocampal slices and cortical neuron cultures have provided promising results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

31st Conference on Neural Information Processing Systems (NIPS 2017), 4. Dez. 2017 - 9. Dez. 2017, Long Beach, CA, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PETER, Sven, Elke KIRSCHBAUM, Martin BOTH, Lee CAMPBELL, Brandon HARVEY, Conor HEINS, Daniel DURSTEWITZ, Ferran DIEGO, Fred A. HAMPRECHT, 2017. Sparse convolutional coding for neuronal assembly detection. 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, CA, USA, 4. Dez. 2017 - 9. Dez. 2017. In: GUYON, Isabelle, ed., Ulrike VON LUXBURG, ed., Samy BENGIO, ed. and others. Advances in Neural Information Processing Systems 30 (NIPS 2017). 2017
BibTex
@inproceedings{Peter2017Spars-52773,
  year={2017},
  title={Sparse convolutional coding for neuronal assembly detection},
  url={https://papers.nips.cc/paper/6958-sparse-convolutional-coding-for-neuronal-assembly-detection},
  booktitle={Advances in Neural Information Processing Systems 30 (NIPS 2017)},
  editor={Guyon, Isabelle and von Luxburg, Ulrike and Bengio, Samy},
  author={Peter, Sven and Kirschbaum, Elke and Both, Martin and Campbell, Lee and Harvey, Brandon and Heins, Conor and Durstewitz, Daniel and Diego, Ferran and Hamprecht, Fred A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52773">
    <dc:creator>Peter, Sven</dc:creator>
    <dcterms:abstract xml:lang="eng">Cell assemblies, originally proposed by Donald Hebb (1949), are subsets of neurons firing in a temporally coordinated way that gives rise to repeated motifs supposed to underly neural representations and information processing. Although Hebb's original proposal dates back many decades, the detection of assemblies and their role in coding is still an open and current research topic, partly because simultaneous recordings from large populations of neurons became feasible only relatively recently. Most current and easy-to-apply computational techniques focus on the identification of strictly synchronously spiking neurons. In this paper we propose a new algorithm, based on sparse convolutional coding, for detecting recurrent motifs of arbitrary structure up to a given length. Testing of our algorithm on synthetically generated datasets shows that it outperforms established methods and accurately identifies the temporal structure of embedded assemblies, even when these contain overlapping neurons or when strong background noise is present. Moreover, exploratory analysis of experimental datasets from hippocampal slices and cortical neuron cultures have provided promising results.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Kirschbaum, Elke</dc:creator>
    <dc:contributor>Diego, Ferran</dc:contributor>
    <dc:creator>Heins, Conor</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hamprecht, Fred A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2017</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52773"/>
    <dc:contributor>Both, Martin</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T09:17:03Z</dcterms:available>
    <dcterms:title>Sparse convolutional coding for neuronal assembly detection</dcterms:title>
    <dc:contributor>Heins, Conor</dc:contributor>
    <dc:creator>Campbell, Lee</dc:creator>
    <dc:contributor>Kirschbaum, Elke</dc:contributor>
    <dc:contributor>Campbell, Lee</dc:contributor>
    <dc:contributor>Durstewitz, Daniel</dc:contributor>
    <dc:creator>Harvey, Brandon</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Harvey, Brandon</dc:contributor>
    <dc:creator>Diego, Ferran</dc:creator>
    <dc:contributor>Hamprecht, Fred A.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T09:17:03Z</dc:date>
    <dc:contributor>Peter, Sven</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Both, Martin</dc:creator>
    <dc:creator>Durstewitz, Daniel</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen