Publikation:

Newsalyze : Effective Communication of Person-Targeting Biases in News Articles

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

DOWNIE, J. Stephen, ed. and others. 2021 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2021 ; proceedings. Piscataway, NJ: IEEE, 2021, pp. 130-139. ISBN 978-1-66541-770-9. Available under: doi: 10.1109/JCDL52503.2021.00025

Zusammenfassung

Media bias and its extreme form, fake news, can decisively affect public opinion. Especially when reporting on policy issues, slanted news coverage may strongly influence societal decisions, e.g., in democratic elections. Our paper makes three contributions to address this issue. First, we present a system for bias identification, which combines state-of-the-art methods from natural language understanding. Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers. Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption, e.g., we present respondents with a news overview and individual articles. We not only measure the visualizations' effect on respondents' bias-awareness, but we can also pinpoint the effects on individual components of the visualizations by employing a conjoint design. Our bias-sensitive overviews strongly and significantly increase bias-awareness in respondents. Our study further suggests that our content-driven identification method detects groups of similarly slanted news articles due to substantial biases present in individual news articles. In contrast, the reviewed prior work rather only facilitates the visibility of biases, e.g., by distinguishing left- and right-wing outlets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

JCDL 2021 : ACM/IEEE Joint Conference on Digital Libraries, 27. Sept. 2021 - 30. Sept. 2021, Virtual Conference
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAMBORG, Felix, Kim HEINSER, Anastasia ZHUKOVA, Karsten DONNAY, Bela GIPP, 2021. Newsalyze : Effective Communication of Person-Targeting Biases in News Articles. JCDL 2021 : ACM/IEEE Joint Conference on Digital Libraries. Virtual Conference, 27. Sept. 2021 - 30. Sept. 2021. In: DOWNIE, J. Stephen, ed. and others. 2021 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2021 ; proceedings. Piscataway, NJ: IEEE, 2021, pp. 130-139. ISBN 978-1-66541-770-9. Available under: doi: 10.1109/JCDL52503.2021.00025
BibTex
@inproceedings{Hamborg2021Newsa-57196,
  year={2021},
  doi={10.1109/JCDL52503.2021.00025},
  title={Newsalyze : Effective Communication of Person-Targeting Biases in News Articles},
  isbn={978-1-66541-770-9},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2021 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2021 ; proceedings},
  pages={130--139},
  editor={Downie, J. Stephen},
  author={Hamborg, Felix and Heinser, Kim and Zhukova, Anastasia and Donnay, Karsten and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57196">
    <dc:contributor>Heinser, Kim</dc:contributor>
    <dc:contributor>Zhukova, Anastasia</dc:contributor>
    <dc:creator>Zhukova, Anastasia</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Media bias and its extreme form, fake news, can decisively affect public opinion. Especially when reporting on policy issues, slanted news coverage may strongly influence societal decisions, e.g., in democratic elections. Our paper makes three contributions to address this issue. First, we present a system for bias identification, which combines state-of-the-art methods from natural language understanding. Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers. Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption, e.g., we present respondents with a news overview and individual articles. We not only measure the visualizations' effect on respondents' bias-awareness, but we can also pinpoint the effects on individual components of the visualizations by employing a conjoint design. Our bias-sensitive overviews strongly and significantly increase bias-awareness in respondents. Our study further suggests that our content-driven identification method detects groups of similarly slanted news articles due to substantial biases present in individual news articles. In contrast, the reviewed prior work rather only facilitates the visibility of biases, e.g., by distinguishing left- and right-wing outlets.</dcterms:abstract>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Heinser, Kim</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-07T06:48:11Z</dcterms:available>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dcterms:issued>2021</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57196"/>
    <dcterms:title>Newsalyze : Effective Communication of Person-Targeting Biases in News Articles</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Donnay, Karsten</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-07T06:48:11Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen