Publikation: Newsalyze : Effective Communication of Person-Targeting Biases in News Articles
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Media bias and its extreme form, fake news, can decisively affect public opinion. Especially when reporting on policy issues, slanted news coverage may strongly influence societal decisions, e.g., in democratic elections. Our paper makes three contributions to address this issue. First, we present a system for bias identification, which combines state-of-the-art methods from natural language understanding. Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers. Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption, e.g., we present respondents with a news overview and individual articles. We not only measure the visualizations' effect on respondents' bias-awareness, but we can also pinpoint the effects on individual components of the visualizations by employing a conjoint design. Our bias-sensitive overviews strongly and significantly increase bias-awareness in respondents. Our study further suggests that our content-driven identification method detects groups of similarly slanted news articles due to substantial biases present in individual news articles. In contrast, the reviewed prior work rather only facilitates the visibility of biases, e.g., by distinguishing left- and right-wing outlets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAMBORG, Felix, Kim HEINSER, Anastasia ZHUKOVA, Karsten DONNAY, Bela GIPP, 2021. Newsalyze : Effective Communication of Person-Targeting Biases in News Articles. JCDL 2021 : ACM/IEEE Joint Conference on Digital Libraries. Virtual Conference, 27. Sept. 2021 - 30. Sept. 2021. In: DOWNIE, J. Stephen, ed. and others. 2021 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2021 ; proceedings. Piscataway, NJ: IEEE, 2021, pp. 130-139. ISBN 978-1-66541-770-9. Available under: doi: 10.1109/JCDL52503.2021.00025BibTex
@inproceedings{Hamborg2021Newsa-57196, year={2021}, doi={10.1109/JCDL52503.2021.00025}, title={Newsalyze : Effective Communication of Person-Targeting Biases in News Articles}, isbn={978-1-66541-770-9}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2021 ACM/IEEE Joint Conference on Digital Libraries : JCDL 2021 ; proceedings}, pages={130--139}, editor={Downie, J. Stephen}, author={Hamborg, Felix and Heinser, Kim and Zhukova, Anastasia and Donnay, Karsten and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57196"> <dc:contributor>Heinser, Kim</dc:contributor> <dc:contributor>Zhukova, Anastasia</dc:contributor> <dc:creator>Zhukova, Anastasia</dc:creator> <dc:creator>Gipp, Bela</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamborg, Felix</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Media bias and its extreme form, fake news, can decisively affect public opinion. Especially when reporting on policy issues, slanted news coverage may strongly influence societal decisions, e.g., in democratic elections. Our paper makes three contributions to address this issue. First, we present a system for bias identification, which combines state-of-the-art methods from natural language understanding. Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers. Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption, e.g., we present respondents with a news overview and individual articles. We not only measure the visualizations' effect on respondents' bias-awareness, but we can also pinpoint the effects on individual components of the visualizations by employing a conjoint design. Our bias-sensitive overviews strongly and significantly increase bias-awareness in respondents. Our study further suggests that our content-driven identification method detects groups of similarly slanted news articles due to substantial biases present in individual news articles. In contrast, the reviewed prior work rather only facilitates the visibility of biases, e.g., by distinguishing left- and right-wing outlets.</dcterms:abstract> <dc:contributor>Donnay, Karsten</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Heinser, Kim</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hamborg, Felix</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-07T06:48:11Z</dcterms:available> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57196"/> <dcterms:title>Newsalyze : Effective Communication of Person-Targeting Biases in News Articles</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Donnay, Karsten</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-07T06:48:11Z</dc:date> </rdf:Description> </rdf:RDF>