Publikation: Reversed electron transport in syntrophic degradation of glucose, butyrate and ethanol
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The anaerobic bacteria investigated in this thesis can gain energy from metabolization of their respective substrates only by close cooperation with methanogenic archaea. By fermentation of the substrate through the fermenting bacterium hydrogen is being formed, which is used by the hydrogen-scavenging partner bacterium for the production of methane. Thus a low hydrogen partial pressure is being maintained which allows the oxidation of the thermodynamically unfavourable substrate. This exceptional case of a symbiotic relationship is defined as syntrophy. In some cases, the fermenting bacterium has to invest energy in addition to shift electrons derived from oxidation processes to the redox potential of proton reduction to hydrogen, which is called reversed electron transport.
The aim of this study was the biochemical characterization of the components of the reversed electron transport in the fermenting bacteria of syntrophic cocultures growing on glucose, butyrate, or ethanol. For the glucose-utilizing bacterium Bacillus sp. BoGlc83 it was shown that, besides acetate, lactate and traces of succinate could be formed during syntrophic growth. Interspecies electron transfer occurs most likely through formate. The bacterium has all glycolytic enzymes as well as all enzymes necessary for the formation of acetate and lactate from pyruvate. Therefore, a fermentation of glucose should be possible without syntrophic partner. However, the bacterium strictly depends on the presence of a methanogenic partner organism. This phenomenon could not be explained sufficiently during this study.
For syntrophic oxidation of butyrate by Syntrophomonas wolfei, a novel enzyme system has been described which catalyzes the oxidation of NADH with several different electron acceptors. By inhibition of this enzyme system with trifluoperazine in vivo, it was shown that this enzyme system is essential for butyrate oxidation and regeneration of redox carriers. More detailed characterization on the basis of sequence information from the genome of S. wolfei revealed a homology of this enzyme system with the confurcating enzyme system from Thermotoga maritima, which catalyzes the concomitant oxidation of NADH and reduced ferredoxin with protons to form hydrogen. Yet, this reaction could not be shown for S. wolfei. Instead, an enzyme reaction with quinones located in the cytoplasmic membrane was postulated. This process could be driven by proton influx into the cell.
In the case of syntrophic oxidation of ethanol, enzyme activities and growth yields of two different cocultures were compared. The coculture Desulfovibrio strain KoEME1 plus Methanospirillum hungatei had significantly lower growth yields compared to the coculture Pelobacter acetylenicus plus M. hungatei. This was explained by the absence of an acetylating acetaldehyde dehydrogenase in Desulfovibrio strain KoEME1. Both Desulfovibrio strain KoEME1 and Pelobacter acetylenicus showed activities of a non-acetylating und therefore non-energy conserving acetaldehyde dehydrogenase which most likely facilitates the endergonic oxidation of ethanol by lowering the intracellular concentration of acetaldehyde.
Zusammenfassung in einer weiteren Sprache
Die in dieser Arbeit untersuchten anaeroben Bakterien können Energie aus dem Abbau der jeweils beschriebenen Substrate nur gewinnen, indem sie eng mit methanogenen Archaeen kooperieren. Durch die Vergärung des Substrats durch das gärende Bakterium wird Wasserstoff gebildet, welcher vom wasserstoffzehrenden Partnerbakterium zur Bildung von Methan verwendet wird. Somit wird ein niedriger Wasserstoffpartialdruck aufrechterhalten, wodurch die Oxidation des thermodynamisch ungünstigen Substrats überhaupt erst ermöglicht wird. Dieser Sonderfall einer Symbiose wird als Syntrophie bezeichnet. In einigen Fällen muß der Gärer zudem Energie aufwenden, um die bei der Oxidation freiwerdenden Elektronen auf das Redoxpotential der Protonenreduktion zu Wasserstoff anzuheben, was als revertierter Elektronentransport bezeichnet wird.
Ziel der vorliegenden Arbeit war die biochemische Charakterisierung der Komponenten des revertierten Elektronentransports in den gärenden Bakterien der syntrophen Kokulturen, die auf Glucose, Butyrat oder Ethanol wuchsen. Im Fall des Glucose-verwertenden Bakteriums Bacillus sp. BoGlc83 wurde gezeigt, dass während des Wachstums neben Acetat mit steigender Kultivierungstemperatur auch Lactat und Spuren von Succinat gebildet wurden. Der Transfer von Reduktionsäquivalenten zum methanogenen Partner findet vermutlich über Formiat statt. Das Bakterium besitzt alle Glykolyseenzyme sowie alle Enzyme, die zur Bildung von Acetat und Lactat aus Pyruvat nötig sind. Somit sollte die Vergärung von Glucose problemlos ohne Partnerorganismus möglich sein. Dennoch ist das Bakterium obligat auf die Anwesenheit eines methanogenen Partnerorganismus angewiesen. Dieses Phänomen konnte im Zuge dieser Arbeit noch nicht hinreichend geklärt werden.
Für die syntrophe Oxidation von Butyrat durch Syntrophomonas wolfei wurde in dieser Arbeit ein neuartiges Enzymsystem beschrieben, das die Oxidation von NADH mit verschiedenen Elektronenakzeptoren katalysiert. Durch Hemmung dieses Enzymsystems durch Trifluoperazin in vivo wurde gezeigt, dass letzteres für die Oxidation von Butyrat und die Regeneration von Redoxcarriern essentiell ist. Eine genauere Charakterisierung anhand von Sequenzinformationen des Genoms von Syntrophomonas wolfei zeigte eine Ähnlichkeit des Enzymsystems zu einem comproportionierenden Enzymsystem aus Thermotoga maritima, welches unter gleichzeitiger Oxidation von NADH und reduziertem Ferredoxin Protonen zu Wasserstoff reduziert. Diese Reaktion konnte jedoch für S. wolfei noch nicht nachgewiesen werden. Stattdessen wurde eine Enzymreaktion mit Chinonen in der cytoplasmatischen Membran vorgeschlagen. Die Energetisierung dieses Prozesses könnte durch Protoneneinstrom in die Zelle erfolgen.
Im Fall der syntrophen Oxidation von Ethanol wurden jeweils bei zwei verschiedenen Kokulturen die beteiligten Enzymaktivitäten in Zellextrakten und die Wachstumserträge miteinander verglichen. Die Kokultur Desulfovibrio sp. KoEME1 plus Methanospirillum hungatei hatte deutlich niedrigere Wachstumserträge im Vergleich zur Kokultur Pelobacter acetylenicus plus M. hungatei. Dies wurde durch die Abwesenheit einer acetylierenden Acetaldehyddehydrogenase in Desulfovibrio sp. KoEME1 erklärt. Sowohl Desulfovibrio sp. KoEME1 als auch Pelobacter acetylenicus zeigten Aktivitäten einer nicht-acetylierenden und somit nicht-energiekonservierenden Acetaldehyddehydrogenase, welche vermutlich durch Niedrighalten der intrazellulären Acetaldehydkonzentration die endergone Oxidation von Ethanol möglich macht.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MÜLLER, Nicolai, 2010. Reversed electron transport in syntrophic degradation of glucose, butyrate and ethanol [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Muller2010Rever-7221, year={2010}, title={Reversed electron transport in syntrophic degradation of glucose, butyrate and ethanol}, author={Müller, Nicolai}, note={Teile der Arbeit erschienen in: Environmental Microbiology 10 (2008), 6, pp. 1501-1511 und in: Journal of Bacteriology 191 (2009), 19, pp. 6167-6177}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7221"> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7221"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7221/1/Dissertation_NicolaiMueller_210410.pdf"/> <dcterms:issued>2010</dcterms:issued> <dc:creator>Müller, Nicolai</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T23:25:03Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Reversed electron transport in syntrophic degradation of glucose, butyrate and ethanol</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Müller, Nicolai</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7221/1/Dissertation_NicolaiMueller_210410.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:32:45Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:format>application/pdf</dc:format> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:alternative>Revertierter Elektronentransport im syntrophen Abbau von Glucose, Butyrat und Ethanol</dcterms:alternative> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">The anaerobic bacteria investigated in this thesis can gain energy from metabolization of their respective substrates only by close cooperation with methanogenic archaea. By fermentation of the substrate through the fermenting bacterium hydrogen is being formed, which is used by the hydrogen-scavenging partner bacterium for the production of methane. Thus a low hydrogen partial pressure is being maintained which allows the oxidation of the thermodynamically unfavourable substrate. This exceptional case of a symbiotic relationship is defined as syntrophy. In some cases, the fermenting bacterium has to invest energy in addition to shift electrons derived from oxidation processes to the redox potential of proton reduction to hydrogen, which is called reversed electron transport.<br />The aim of this study was the biochemical characterization of the components of the reversed electron transport in the fermenting bacteria of syntrophic cocultures growing on glucose, butyrate, or ethanol. For the glucose-utilizing bacterium Bacillus sp. BoGlc83 it was shown that, besides acetate, lactate and traces of succinate could be formed during syntrophic growth. Interspecies electron transfer occurs most likely through formate. The bacterium has all glycolytic enzymes as well as all enzymes necessary for the formation of acetate and lactate from pyruvate. Therefore, a fermentation of glucose should be possible without syntrophic partner. However, the bacterium strictly depends on the presence of a methanogenic partner organism. This phenomenon could not be explained sufficiently during this study.<br />For syntrophic oxidation of butyrate by Syntrophomonas wolfei, a novel enzyme system has been described which catalyzes the oxidation of NADH with several different electron acceptors. By inhibition of this enzyme system with trifluoperazine in vivo, it was shown that this enzyme system is essential for butyrate oxidation and regeneration of redox carriers. More detailed characterization on the basis of sequence information from the genome of S. wolfei revealed a homology of this enzyme system with the confurcating enzyme system from Thermotoga maritima, which catalyzes the concomitant oxidation of NADH and reduced ferredoxin with protons to form hydrogen. Yet, this reaction could not be shown for S. wolfei. Instead, an enzyme reaction with quinones located in the cytoplasmic membrane was postulated. This process could be driven by proton influx into the cell.<br />In the case of syntrophic oxidation of ethanol, enzyme activities and growth yields of two different cocultures were compared. The coculture Desulfovibrio strain KoEME1 plus Methanospirillum hungatei had significantly lower growth yields compared to the coculture Pelobacter acetylenicus plus M. hungatei. This was explained by the absence of an acetylating acetaldehyde dehydrogenase in Desulfovibrio strain KoEME1. Both Desulfovibrio strain KoEME1 and Pelobacter acetylenicus showed activities of a non-acetylating und therefore non-energy conserving acetaldehyde dehydrogenase which most likely facilitates the endergonic oxidation of ethanol by lowering the intracellular concentration of acetaldehyde.</dcterms:abstract> </rdf:Description> </rdf:RDF>