Publikation:

Uncertainty-Aware Enrichment of Animal Movement Trajectories by VGI

Lade...
Vorschaubild

Dateien

Metz_2-82mujt57zx1n2.pdf
Metz_2-82mujt57zx1n2.pdfGröße: 1.48 MBDownloads: 17

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

BURGHARDT, Dirk, ed., Elena DEMIDOVA, ed., Daniel KEIM, ed.. Volunteered Geographic Information : Interpretation, Visualization and Social Context. Cham: Springer Nature, 2024, pp. 79-101. ISBN 978-3-031-35373-4. Available under: doi: 10.1007/978-3-031-35374-1_4

Zusammenfassung

Combining data from different sources and modalities can unlock novel insights that are not available by analyzing single data sources in isolation. We investigate how multimodal user-generated data, consisting of images, videos, or text descriptions, can be used to enrich trajectories of migratory birds, e.g., for research on biodiversity or climate change. Firstly, we present our work on advanced visual analysis of GPS trajectory data. We developed an interactive application that lets domain experts from ornithology naturally explore spatiotemporal data and effectively use their knowledge. Secondly, we discuss work on the integration of general-purpose image data into citizen science platforms. As part of inter-project cooperation, we contribute to the development of a classifier pipeline to semi-automatically extract images that can be integrated with different data sources to vastly increase the number of available records in citizen science platforms. These works are an important foundation for a dynamic matching approach to jointly integrate geospatial trajectory data and user-generated geo-referenced content. Building on this work, we explore the joint visualization of trajectory data and VGI data while considering the uncertainty of observations. BirdTrace , a visual analytics approach to enable a multi-scale analysis of trajectory and multimodal user-generated data, is highlighted. Finally, we comment on the possibility to enhance prediction models for trajectories by integrating additional data and domain knowledge.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690METZ, Yannick, Daniel A. KEIM, 2024. Uncertainty-Aware Enrichment of Animal Movement Trajectories by VGI. In: BURGHARDT, Dirk, ed., Elena DEMIDOVA, ed., Daniel KEIM, ed.. Volunteered Geographic Information : Interpretation, Visualization and Social Context. Cham: Springer Nature, 2024, pp. 79-101. ISBN 978-3-031-35373-4. Available under: doi: 10.1007/978-3-031-35374-1_4
BibTex
@incollection{Metz2024Uncer-68936,
  year={2024},
  doi={10.1007/978-3-031-35374-1_4},
  title={Uncertainty-Aware Enrichment of Animal Movement Trajectories by VGI},
  isbn={978-3-031-35373-4},
  publisher={Springer Nature},
  address={Cham},
  booktitle={Volunteered Geographic Information : Interpretation, Visualization and Social Context},
  pages={79--101},
  editor={Burghardt, Dirk and Demidova, Elena and Keim, Daniel},
  author={Metz, Yannick and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68936">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68936"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2024</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:title>Uncertainty-Aware Enrichment of Animal Movement Trajectories by VGI</dcterms:title>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68936/1/Metz_2-82mujt57zx1n2.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T08:18:29Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-05T08:18:29Z</dcterms:available>
    <dc:creator>Metz, Yannick</dc:creator>
    <dcterms:abstract>Combining data from different sources and modalities can unlock novel insights that are not available by analyzing single data sources in isolation. We investigate how multimodal user-generated data, consisting of images, videos, or text descriptions, can be used to enrich trajectories of migratory birds, e.g., for research on biodiversity or climate change. Firstly, we present our work on advanced visual analysis of GPS trajectory data. We developed an interactive application that lets domain experts from ornithology naturally explore spatiotemporal data and effectively use their knowledge. Secondly, we discuss work on the integration of general-purpose image data into citizen science platforms. As part of inter-project cooperation, we contribute to the development of a classifier pipeline to semi-automatically extract images that can be integrated with different data sources to vastly increase the number of available records in citizen science platforms. These works are an important foundation for a dynamic matching approach to jointly integrate geospatial trajectory data and user-generated geo-referenced content. Building on this work, we explore the joint visualization of trajectory data and VGI data while considering the uncertainty of observations. BirdTrace , a visual analytics approach to enable a multi-scale analysis of trajectory and multimodal user-generated data, is highlighted. Finally, we comment on the possibility to enhance prediction models for trajectories by integrating additional data and domain knowledge.</dcterms:abstract>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68936/1/Metz_2-82mujt57zx1n2.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen