Determination of the filamentous cyanobacteria Planktothrix rubescens in environmental water samples using an image processing system
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Zusammenfassung
Cyanobacteria occur in surface waters worldwide. Many of these produce peptides and/or alkaloids, which can present a risk for animal and human health. Effective risk assessment and management requires continuous and precise observation and quantification of cyanobacterial cell densities. In this respect, quantification of filamentous Planktothrix species is problematic. The aim of this study was to develop an automated system to count filamentous Planktothrix rubescens using image processing. Furthermore, this study aimed to assess optimum sample volumes and filament density for measurement precision and to validate image processing measurement of P. rubescens for an effective risk assessment.
Three environmental samples and one cultured sample of P. rubescens were collected by filtration onto nitrocellulose filters. Filament lengths were determined using fluorescence microscopy combined with an image processor. Cell density could be calculated from the resulting images. Cyanobacteria could easily be discriminated from algae via their fluorescence properties. The results were found to be independent of the mode of image acquisition. The precision of total filament length determination was dependent on the total filament length on the filter, i.e. analyses of highest precision could be expected for filters containing 2000 20,000 μm filaments per mm2. When using suitable filtration volumes, the detection limits of the described method are sufficient for an effective risk assessment. To summarise, this procedure is a fast, easy and accurate method to determine cell densities of filamentous P. rubescens in water samples without costly and tedious manual handling.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ERNST, Bernhard, Stephan NESER, Evelyn O'BRIEN, Stefan J. HÖGER, Daniel R. DIETRICH, 2006. Determination of the filamentous cyanobacteria Planktothrix rubescens in environmental water samples using an image processing system. In: Harmful algae. 2006, 5(3), pp. 281-289. ISSN 1568-9883. eISSN 1878-1470BibTex
@article{Ernst2006Deter-7265, year={2006}, title={Determination of the filamentous cyanobacteria Planktothrix rubescens in environmental water samples using an image processing system}, number={3}, volume={5}, issn={1568-9883}, journal={Harmful algae}, pages={281--289}, author={Ernst, Bernhard and Neser, Stephan and O'Brien, Evelyn and Höger, Stefan J. and Dietrich, Daniel R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7265"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Determination of the filamentous cyanobacteria Planktothrix rubescens in environmental water samples using an image processing system</dcterms:title> <dc:creator>Neser, Stephan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2006</dcterms:issued> <dc:contributor>O'Brien, Evelyn</dc:contributor> <dcterms:abstract xml:lang="eng">Cyanobacteria occur in surface waters worldwide. Many of these produce peptides and/or alkaloids, which can present a risk for animal and human health. Effective risk assessment and management requires continuous and precise observation and quantification of cyanobacterial cell densities. In this respect, quantification of filamentous Planktothrix species is problematic. The aim of this study was to develop an automated system to count filamentous Planktothrix rubescens using image processing. Furthermore, this study aimed to assess optimum sample volumes and filament density for measurement precision and to validate image processing measurement of P. rubescens for an effective risk assessment.<br />Three environmental samples and one cultured sample of P. rubescens were collected by filtration onto nitrocellulose filters. Filament lengths were determined using fluorescence microscopy combined with an image processor. Cell density could be calculated from the resulting images. Cyanobacteria could easily be discriminated from algae via their fluorescence properties. The results were found to be independent of the mode of image acquisition. The precision of total filament length determination was dependent on the total filament length on the filter, i.e. analyses of highest precision could be expected for filters containing 2000 20,000 μm filaments per mm2. When using suitable filtration volumes, the detection limits of the described method are sufficient for an effective risk assessment. To summarise, this procedure is a fast, easy and accurate method to determine cell densities of filamentous P. rubescens in water samples without costly and tedious manual handling.</dcterms:abstract> <dc:contributor>Neser, Stephan</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7265/1/Ernst_2006281_289_Harmful_Algae.pdf"/> <dc:creator>Höger, Stefan J.</dc:creator> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7265"/> <dc:contributor>Höger, Stefan J.</dc:contributor> <dc:creator>Dietrich, Daniel R.</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:33:04Z</dc:date> <dc:creator>Ernst, Bernhard</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7265/1/Ernst_2006281_289_Harmful_Algae.pdf"/> <dcterms:bibliographicCitation>First publ. in: Harmful algae 5 (2006), 3, pp. 281-289</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Dietrich, Daniel R.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:33:04Z</dcterms:available> <dc:contributor>Ernst, Bernhard</dc:contributor> <dc:creator>O'Brien, Evelyn</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> </rdf:Description> </rdf:RDF>