Publikation: Humans flexibly integrate social information despite interindividual differences in reward
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 42203798
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
There has been much progress in understanding human social learning, including recent studies integrating social information into the reinforcement learning framework. Yet previous studies often assume identical payoffs between observer and demonstrator, overlooking the diversity of social information in real-world interactions. We address this gap by introducing a socially correlated bandit task that accommodates payoff differences among participants, allowing for the study of social learning under more realistic conditions. Our Social Generalization (SG) model, tested through evolutionary simulations and two online experiments, outperforms existing models by incorporating social information into the generalization process, but treating it as noisier than individual observations. Our findings suggest that human social learning is more flexible than previously believed, with the SG model indicating a potential resource-rational trade-off where social learning partially replaces individual exploration. This research highlights the flexibility of humans’ social learning, allowing us to integrate social information from others with different preferences, skills, or goals.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WITT, Alexandra, Wataru TOYOKAWA, Kevin N. LALA, Wolfgang GAISSMAIER, Charley M. WU, 2024. Humans flexibly integrate social information despite interindividual differences in reward. In: Proceedings of the National Academy of Sciences of the United States of America (PNAS). Proceedings of the National Academy of Sciences. 2024, 121(39), e2404928121. ISSN 0027-8424. eISSN 1091-6490. Verfügbar unter: doi: 10.1073/pnas.2404928121BibTex
@article{Witt2024-09-24Human-70895, year={2024}, doi={10.1073/pnas.2404928121}, title={Humans flexibly integrate social information despite interindividual differences in reward}, number={39}, volume={121}, issn={0027-8424}, journal={Proceedings of the National Academy of Sciences of the United States of America (PNAS)}, author={Witt, Alexandra and Toyokawa, Wataru and Lala, Kevin N. and Gaissmaier, Wolfgang and Wu, Charley M.}, note={Article Number: e2404928121} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70895"> <dc:creator>Toyokawa, Wataru</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70895/1/Witt_2-85uynt8q9er24.pdf"/> <dc:creator>Witt, Alexandra</dc:creator> <dc:creator>Gaissmaier, Wolfgang</dc:creator> <dc:creator>Lala, Kevin N.</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70895"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dcterms:issued>2024-09-24</dcterms:issued> <dc:contributor>Toyokawa, Wataru</dc:contributor> <dcterms:title>Humans flexibly integrate social information despite interindividual differences in reward</dcterms:title> <dc:contributor>Lala, Kevin N.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-04T07:15:55Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:abstract>There has been much progress in understanding human social learning, including recent studies integrating social information into the reinforcement learning framework. Yet previous studies often assume identical payoffs between observer and demonstrator, overlooking the diversity of social information in real-world interactions. We address this gap by introducing a socially correlated bandit task that accommodates payoff differences among participants, allowing for the study of social learning under more realistic conditions. Our Social Generalization (SG) model, tested through evolutionary simulations and two online experiments, outperforms existing models by incorporating social information into the generalization process, but treating it as noisier than individual observations. Our findings suggest that human social learning is more flexible than previously believed, with the SG model indicating a potential resource-rational trade-off where social learning partially replaces individual exploration. This research highlights the flexibility of humans’ social learning, allowing us to integrate social information from others with different preferences, skills, or goals.</dcterms:abstract> <dc:contributor>Gaissmaier, Wolfgang</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-04T07:15:55Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70895/1/Witt_2-85uynt8q9er24.pdf"/> <dc:contributor>Wu, Charley M.</dc:contributor> <dc:contributor>Witt, Alexandra</dc:contributor> <dc:creator>Wu, Charley M.</dc:creator> </rdf:Description> </rdf:RDF>