Publikation:

Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Xu, Liangliang
Xu, Ning
Ren, Zhichu
Hou, Xianbiao
Han, Zhongkang
Sarker, Debalaya
Levchenko, Sergey V.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

National Natural Science Foundation of China: 52261145700, 22279124

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Angewandte Chemie International Edition. Wiley. 2024, 63(36), e202409449. ISSN 1433-7851. eISSN 1521-3773. Verfügbar unter: doi: 10.1002/anie.202409449

Zusammenfassung

The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d ‐band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

data-driven descriptors, electronic structure, metal–organic frameworks, oxygen evolution reaction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHOU, Jian, Liangliang XU, Huiyu GAI, Ning XU, Zhichu REN, Xianbiao HOU, Zongkun CHEN, Zhongkang HAN, Debalaya SARKER, Sergey V. LEVCHENKO, Minghua HUANG, 2024. Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction. In: Angewandte Chemie International Edition. Wiley. 2024, 63(36), e202409449. ISSN 1433-7851. eISSN 1521-3773. Verfügbar unter: doi: 10.1002/anie.202409449
BibTex
@article{Zhou2024-08-02Inter-70823,
  year={2024},
  doi={10.1002/anie.202409449},
  title={Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction},
  number={36},
  volume={63},
  issn={1433-7851},
  journal={Angewandte Chemie International Edition},
  author={Zhou, Jian and Xu, Liangliang and Gai, Huiyu and Xu, Ning and Ren, Zhichu and Hou, Xianbiao and Chen, Zongkun and Han, Zhongkang and Sarker, Debalaya and Levchenko, Sergey V. and Huang, Minghua},
  note={Article Number: e202409449}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70823">
    <dc:creator>Xu, Ning</dc:creator>
    <dc:creator>Gai, Huiyu</dc:creator>
    <dc:creator>Chen, Zongkun</dc:creator>
    <dc:contributor>Sarker, Debalaya</dc:contributor>
    <dc:contributor>Levchenko, Sergey V.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T09:29:00Z</dc:date>
    <dc:creator>Zhou, Jian</dc:creator>
    <dc:contributor>Xu, Liangliang</dc:contributor>
    <dc:contributor>Zhou, Jian</dc:contributor>
    <dc:contributor>Gai, Huiyu</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hou, Xianbiao</dc:creator>
    <dc:contributor>Chen, Zongkun</dc:contributor>
    <dc:creator>Sarker, Debalaya</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70823"/>
    <dc:contributor>Xu, Ning</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Han, Zhongkang</dc:contributor>
    <dcterms:issued>2024-08-02</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Xu, Liangliang</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Huang, Minghua</dc:creator>
    <dc:contributor>Huang, Minghua</dc:contributor>
    <dc:contributor>Hou, Xianbiao</dc:contributor>
    <dc:creator>Han, Zhongkang</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Levchenko, Sergey V.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T09:29:00Z</dcterms:available>
    <dc:contributor>Ren, Zhichu</dc:contributor>
    <dc:creator>Ren, Zhichu</dc:creator>
    <dcterms:title>Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction</dcterms:title>
    <dcterms:abstract>The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d ‐band center and number of missing electrons in e&lt;sub&gt;g&lt;/sub&gt;  states of Ni, as well as the first ionization energy and number of electrons in e&lt;sub&gt;g&lt;/sub&gt;  states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen