Publikation: Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d ‐band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHOU, Jian, Liangliang XU, Huiyu GAI, Ning XU, Zhichu REN, Xianbiao HOU, Zongkun CHEN, Zhongkang HAN, Debalaya SARKER, Sergey V. LEVCHENKO, Minghua HUANG, 2024. Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction. In: Angewandte Chemie International Edition. Wiley. 2024, 63(36), e202409449. ISSN 1433-7851. eISSN 1521-3773. Verfügbar unter: doi: 10.1002/anie.202409449BibTex
@article{Zhou2024-08-02Inter-70823, year={2024}, doi={10.1002/anie.202409449}, title={Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction}, number={36}, volume={63}, issn={1433-7851}, journal={Angewandte Chemie International Edition}, author={Zhou, Jian and Xu, Liangliang and Gai, Huiyu and Xu, Ning and Ren, Zhichu and Hou, Xianbiao and Chen, Zongkun and Han, Zhongkang and Sarker, Debalaya and Levchenko, Sergey V. and Huang, Minghua}, note={Article Number: e202409449} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70823"> <dc:creator>Xu, Ning</dc:creator> <dc:creator>Gai, Huiyu</dc:creator> <dc:creator>Chen, Zongkun</dc:creator> <dc:contributor>Sarker, Debalaya</dc:contributor> <dc:contributor>Levchenko, Sergey V.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T09:29:00Z</dc:date> <dc:creator>Zhou, Jian</dc:creator> <dc:contributor>Xu, Liangliang</dc:contributor> <dc:contributor>Zhou, Jian</dc:contributor> <dc:contributor>Gai, Huiyu</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hou, Xianbiao</dc:creator> <dc:contributor>Chen, Zongkun</dc:contributor> <dc:creator>Sarker, Debalaya</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70823"/> <dc:contributor>Xu, Ning</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Han, Zhongkang</dc:contributor> <dcterms:issued>2024-08-02</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Xu, Liangliang</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Huang, Minghua</dc:creator> <dc:contributor>Huang, Minghua</dc:contributor> <dc:contributor>Hou, Xianbiao</dc:contributor> <dc:creator>Han, Zhongkang</dc:creator> <dc:language>eng</dc:language> <dc:creator>Levchenko, Sergey V.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T09:29:00Z</dcterms:available> <dc:contributor>Ren, Zhichu</dc:contributor> <dc:creator>Ren, Zhichu</dc:creator> <dcterms:title>Interpretable Data‐Driven Descriptors for Establishing the Structure‐Activity Relationship of Metal–Organic Frameworks Toward Oxygen Evolution Reaction</dcterms:title> <dcterms:abstract>The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal–organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni‐based MOFs. Through an artificial‐intelligence (AI) data‐mining subgroup discovery (SGD) approach, a combination of the d ‐band center and number of missing electrons in e<sub>g</sub> states of Ni, as well as the first ionization energy and number of electrons in e<sub>g</sub> states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3–5d transition metals and 13 organic linkers, has been demonstrated to facilitate in‐depth understanding of structure–activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni‐based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF‐based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism.</dcterms:abstract> </rdf:Description> </rdf:RDF>