Publikation:

Real rank geometry of ternary forms

Lade...
Vorschaubild

Dateien

Michalek_2-86nr32tvcafl2.pdf
Michalek_2-86nr32tvcafl2.pdfGröße: 884.35 KBDownloads: 219

Datum

2017

Autor:innen

Moon, Hyunsuk
Sturmfels, Bernd
Ventura, Emanuele

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Annali di Matematica Pura ed Applicata. Springer. 2017, 196(3), pp. 1025-1054. ISSN 0373-3114. eISSN 1618-1891. Available under: doi: 10.1007/s10231-016-0606-3

Zusammenfassung

We study real ternary forms whose real rank equals the generic complex rank, and we characterize the semialgebraic set of sums of powers representations with that rank. Complete results are obtained for quadrics and cubics. For quintics, we determine the real rank boundary: It is a hypersurface of degree 168. For quartics, sextics and septics, we identify some of the components of the real rank boundary. The real varieties of sums of powers are stratified by discriminants that are derived from hyperdeterminants.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Real rank, Ternary form, Discriminant

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MICHALEK, Mateusz, Hyunsuk MOON, Bernd STURMFELS, Emanuele VENTURA, 2017. Real rank geometry of ternary forms. In: Annali di Matematica Pura ed Applicata. Springer. 2017, 196(3), pp. 1025-1054. ISSN 0373-3114. eISSN 1618-1891. Available under: doi: 10.1007/s10231-016-0606-3
BibTex
@article{Michalek2017-06geome-52492,
  year={2017},
  doi={10.1007/s10231-016-0606-3},
  title={Real rank geometry of ternary forms},
  number={3},
  volume={196},
  issn={0373-3114},
  journal={Annali di Matematica Pura ed Applicata},
  pages={1025--1054},
  author={Michalek, Mateusz and Moon, Hyunsuk and Sturmfels, Bernd and Ventura, Emanuele}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52492">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:contributor>Sturmfels, Bernd</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T10:52:56Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52492/1/Michalek_2-86nr32tvcafl2.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52492"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Real rank geometry of ternary forms</dcterms:title>
    <dcterms:issued>2017-06</dcterms:issued>
    <dc:creator>Sturmfels, Bernd</dc:creator>
    <dc:creator>Ventura, Emanuele</dc:creator>
    <dc:creator>Moon, Hyunsuk</dc:creator>
    <dcterms:abstract xml:lang="eng">We study real ternary forms whose real rank equals the generic complex rank, and we characterize the semialgebraic set of sums of powers representations with that rank. Complete results are obtained for quadrics and cubics. For quintics, we determine the real rank boundary: It is a hypersurface of degree 168. For quartics, sextics and septics, we identify some of the components of the real rank boundary. The real varieties of sums of powers are stratified by discriminants that are derived from hyperdeterminants.</dcterms:abstract>
    <dc:contributor>Moon, Hyunsuk</dc:contributor>
    <dc:contributor>Ventura, Emanuele</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52492/1/Michalek_2-86nr32tvcafl2.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-18T10:52:56Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen