Publikation:

Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework

Lade...
Vorschaubild

Dateien

El-Assady_2-8cb30e3r5itp3.pdf
El-Assady_2-8cb30e3r5itp3.pdfGröße: 443.85 KBDownloads: 669

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. 2018, 24(1), pp. 382-391. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2745080

Zusammenfassung

Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Topic Model Configuration, Reinforcement Learning, Feature Detection and Tracking, Iterative Optimization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690EL-ASSADY, Mennatallah, Rita SEVASTJANOVA, Fabian SPERRLE, Daniel A. KEIM, Christopher COLLINS, 2018. Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework. In: IEEE Transactions on Visualization and Computer Graphics. 2018, 24(1), pp. 382-391. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2745080
BibTex
@article{ElAssady2018-01Progr-41238,
  year={2018},
  doi={10.1109/TVCG.2017.2745080},
  title={Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework},
  number={1},
  volume={24},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={382--391},
  author={El-Assady, Mennatallah and Sevastjanova, Rita and Sperrle, Fabian and Keim, Daniel A. and Collins, Christopher}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41238">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:19:48Z</dc:date>
    <dc:creator>Sperrle, Fabian</dc:creator>
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Collins, Christopher</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41238"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:19:48Z</dcterms:available>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2018-01</dcterms:issued>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dc:creator>Collins, Christopher</dc:creator>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41238/1/El-Assady_2-8cb30e3r5itp3.pdf"/>
    <dcterms:title>Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework</dcterms:title>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41238/1/El-Assady_2-8cb30e3r5itp3.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen