Publikation: Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EL-ASSADY, Mennatallah, Rita SEVASTJANOVA, Fabian SPERRLE, Daniel A. KEIM, Christopher COLLINS, 2018. Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework. In: IEEE Transactions on Visualization and Computer Graphics. 2018, 24(1), pp. 382-391. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2745080BibTex
@article{ElAssady2018-01Progr-41238, year={2018}, doi={10.1109/TVCG.2017.2745080}, title={Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework}, number={1}, volume={24}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={382--391}, author={El-Assady, Mennatallah and Sevastjanova, Rita and Sperrle, Fabian and Keim, Daniel A. and Collins, Christopher} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41238"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:19:48Z</dc:date> <dc:creator>Sperrle, Fabian</dc:creator> <dc:contributor>Sperrle, Fabian</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Collins, Christopher</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41238"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:19:48Z</dcterms:available> <dc:creator>Sevastjanova, Rita</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2018-01</dcterms:issued> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:creator>Collins, Christopher</dc:creator> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41238/1/El-Assady_2-8cb30e3r5itp3.pdf"/> <dcterms:title>Progressive Learning of Topic Modeling Parameters : A Visual Analytics Framework</dcterms:title> <dc:creator>El-Assady, Mennatallah</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41238/1/El-Assady_2-8cb30e3r5itp3.pdf"/> </rdf:Description> </rdf:RDF>