Publikation:

Visual analysis of frequent patterns in large time series

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Hao, Ming C.
Marwah, Manish
Dayal, Umeshwar
Sharma, Rohit
Patnaik, Devdutt
Ramakrishnan, Naren

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2010 IEEE Symposium on Visual Analytics Science and Technology. Piscataway, NJ: IEEE, 2010, pp. 227-228. ISBN 978-1-4244-9488-0. Available under: doi: 10.1109/VAST.2010.5650766

Zusammenfassung

The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. To find these motifs, we use an advanced temporal data mining algorithm. Since our algorithm usually finds hundreds of motifs, we need to analyze and access the discovered motifs. For this purpose, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. We have applied and evaluated our methods using two real-world data sets: data center cooling and oil well production.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Time series analysis, Petroleum, Visual analytics, Production, Merging, Layout, Data mining

Konferenz

2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), 25. Okt. 2010 - 26. Okt. 2010, Salt Lake City, UT, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAO, Ming C., Manish MARWAH, Halldor JANETZKO, Daniel A. KEIM, Umeshwar DAYAL, Rohit SHARMA, Devdutt PATNAIK, Naren RAMAKRISHNAN, 2010. Visual analysis of frequent patterns in large time series. 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST). Salt Lake City, UT, USA, 25. Okt. 2010 - 26. Okt. 2010. In: 2010 IEEE Symposium on Visual Analytics Science and Technology. Piscataway, NJ: IEEE, 2010, pp. 227-228. ISBN 978-1-4244-9488-0. Available under: doi: 10.1109/VAST.2010.5650766
BibTex
@inproceedings{Hao2010-10Visua-40488,
  year={2010},
  doi={10.1109/VAST.2010.5650766},
  title={Visual analysis of frequent patterns in large time series},
  isbn={978-1-4244-9488-0},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2010 IEEE Symposium on Visual Analytics Science and Technology},
  pages={227--228},
  author={Hao, Ming C. and Marwah, Manish and Janetzko, Halldor and Keim, Daniel A. and Dayal, Umeshwar and Sharma, Rohit and Patnaik, Devdutt and Ramakrishnan, Naren}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40488">
    <dc:contributor>Ramakrishnan, Naren</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T14:40:43Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Sharma, Rohit</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Marwah, Manish</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Visual analysis of frequent patterns in large time series</dcterms:title>
    <dc:creator>Patnaik, Devdutt</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Sharma, Rohit</dc:contributor>
    <dcterms:abstract xml:lang="eng">The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. To find these motifs, we use an advanced temporal data mining algorithm. Since our algorithm usually finds hundreds of motifs, we need to analyze and access the discovered motifs. For this purpose, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. We have applied and evaluated our methods using two real-world data sets: data center cooling and oil well production.</dcterms:abstract>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:creator>Marwah, Manish</dc:creator>
    <dc:contributor>Patnaik, Devdutt</dc:contributor>
    <dcterms:issued>2010-10</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40488"/>
    <dc:creator>Hao, Ming C.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Ramakrishnan, Naren</dc:creator>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T14:40:43Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen