Publikation: Visual analysis of frequent patterns in large time series
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. To find these motifs, we use an advanced temporal data mining algorithm. Since our algorithm usually finds hundreds of motifs, we need to analyze and access the discovered motifs. For this purpose, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. We have applied and evaluated our methods using two real-world data sets: data center cooling and oil well production.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming C., Manish MARWAH, Halldor JANETZKO, Daniel A. KEIM, Umeshwar DAYAL, Rohit SHARMA, Devdutt PATNAIK, Naren RAMAKRISHNAN, 2010. Visual analysis of frequent patterns in large time series. 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST). Salt Lake City, UT, USA, 25. Okt. 2010 - 26. Okt. 2010. In: 2010 IEEE Symposium on Visual Analytics Science and Technology. Piscataway, NJ: IEEE, 2010, pp. 227-228. ISBN 978-1-4244-9488-0. Available under: doi: 10.1109/VAST.2010.5650766BibTex
@inproceedings{Hao2010-10Visua-40488, year={2010}, doi={10.1109/VAST.2010.5650766}, title={Visual analysis of frequent patterns in large time series}, isbn={978-1-4244-9488-0}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2010 IEEE Symposium on Visual Analytics Science and Technology}, pages={227--228}, author={Hao, Ming C. and Marwah, Manish and Janetzko, Halldor and Keim, Daniel A. and Dayal, Umeshwar and Sharma, Rohit and Patnaik, Devdutt and Ramakrishnan, Naren} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40488"> <dc:contributor>Ramakrishnan, Naren</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T14:40:43Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Sharma, Rohit</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Marwah, Manish</dc:contributor> <dc:creator>Janetzko, Halldor</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Visual analysis of frequent patterns in large time series</dcterms:title> <dc:creator>Patnaik, Devdutt</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Sharma, Rohit</dc:contributor> <dcterms:abstract xml:lang="eng">The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. To find these motifs, we use an advanced temporal data mining algorithm. Since our algorithm usually finds hundreds of motifs, we need to analyze and access the discovered motifs. For this purpose, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. We have applied and evaluated our methods using two real-world data sets: data center cooling and oil well production.</dcterms:abstract> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:creator>Marwah, Manish</dc:creator> <dc:contributor>Patnaik, Devdutt</dc:contributor> <dcterms:issued>2010-10</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40488"/> <dc:creator>Hao, Ming C.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Ramakrishnan, Naren</dc:creator> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T14:40:43Z</dc:date> </rdf:Description> </rdf:RDF>