Visual analysis of frequent patterns in large time series

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Hao, Ming C.
Marwah, Manish
Dayal, Umeshwar
Sharma, Rohit
Patnaik, Devdutt
Ramakrishnan, Naren
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2010 IEEE Symposium on Visual Analytics Science and Technology. Piscataway, NJ: IEEE, 2010, pp. 227-228. ISBN 978-1-4244-9488-0. Available under: doi: 10.1109/VAST.2010.5650766
Zusammenfassung

The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. To find these motifs, we use an advanced temporal data mining algorithm. Since our algorithm usually finds hundreds of motifs, we need to analyze and access the discovered motifs. For this purpose, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. We have applied and evaluated our methods using two real-world data sets: data center cooling and oil well production.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Time series analysis, Petroleum, Visual analytics, Production, Merging, Layout, Data mining
Konferenz
2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), 25. Okt. 2010 - 26. Okt. 2010, Salt Lake City, UT, USA
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HAO, Ming C., Manish MARWAH, Halldor JANETZKO, Daniel A. KEIM, Umeshwar DAYAL, Rohit SHARMA, Devdutt PATNAIK, Naren RAMAKRISHNAN, 2010. Visual analysis of frequent patterns in large time series. 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST). Salt Lake City, UT, USA, 25. Okt. 2010 - 26. Okt. 2010. In: 2010 IEEE Symposium on Visual Analytics Science and Technology. Piscataway, NJ: IEEE, 2010, pp. 227-228. ISBN 978-1-4244-9488-0. Available under: doi: 10.1109/VAST.2010.5650766
BibTex
@inproceedings{Hao2010-10Visua-40488,
  year={2010},
  doi={10.1109/VAST.2010.5650766},
  title={Visual analysis of frequent patterns in large time series},
  isbn={978-1-4244-9488-0},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2010 IEEE Symposium on Visual Analytics Science and Technology},
  pages={227--228},
  author={Hao, Ming C. and Marwah, Manish and Janetzko, Halldor and Keim, Daniel A. and Dayal, Umeshwar and Sharma, Rohit and Patnaik, Devdutt and Ramakrishnan, Naren}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40488">
    <dc:contributor>Ramakrishnan, Naren</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T14:40:43Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Sharma, Rohit</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Marwah, Manish</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Visual analysis of frequent patterns in large time series</dcterms:title>
    <dc:creator>Patnaik, Devdutt</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Sharma, Rohit</dc:contributor>
    <dcterms:abstract xml:lang="eng">The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. To find these motifs, we use an advanced temporal data mining algorithm. Since our algorithm usually finds hundreds of motifs, we need to analyze and access the discovered motifs. For this purpose, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. We have applied and evaluated our methods using two real-world data sets: data center cooling and oil well production.</dcterms:abstract>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:creator>Marwah, Manish</dc:creator>
    <dc:contributor>Patnaik, Devdutt</dc:contributor>
    <dcterms:issued>2010-10</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40488"/>
    <dc:creator>Hao, Ming C.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Ramakrishnan, Naren</dc:creator>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-06T14:40:43Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen