Publikation:

Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers

Lade...
Vorschaubild

Dateien

Rittmann_2-8os4nv6zsccr4.pdf
Rittmann_2-8os4nv6zsccr4.pdfGröße: 2.19 MBDownloads: 7

Datum

2024

Autor:innen

Rittmann, Clara
Messmer, Pascal
Niewelt, Tim
Supik, Ella Susann
Heinz, Friedemann D.
Richter, Armin
Weiss, Charlotte
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Solar RRL. Wiley. 2024, 8(4), 2300882. ISSN 2367-198X. eISSN 2367-198X. Verfügbar unter: doi: 10.1002/solr.202300882

Zusammenfassung

Conventional silicon (Si) wafers are produced by energy-intensive ingot crystallization which is responsible for a major share of a solar cell's carbon footprint. This work explores Si epitaxially grown silicon wafers (EpiWafers) that are produced by direct epitaxial deposition of trichlorosilane on a reusable substrate. This approach requires less energy and material and hence offers a potential for reduced cost and carbon footprint. Solar cells made from EpiWafers usually suffer from efficiency losses due to recombination at structural crystal defects associated with epitaxial growth. The nature of these defects is investigated and defects at the EpiWafer's back surface are critical. Most of these defects are highly recombination-active, pairwise-connected misfit dislocations in the <110> direction. They originate from a lattice mismatch between the highly doped substrate and the less-doped epitaxially grown layer. In this contribution, the detrimental impact of these defects can be mitigated using typical manufacturing processes of high-efficiency solar cells, such as KOH etching, gettering, and oxidation. Local minority charge carrier lifetimes as high as 2.2 ms after industrially feasible processes are reported. Simulations using efficiency-limiting bulk recombination analysis implies that the material would allow conversion efficiencies of up to 25.6% considering tunnel oxide-passivated contact acting as rear emitter solar cell design.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RITTMANN, Clara, Pascal MESSMER, Tim NIEWELT, Ella Susann SUPIK, Friedemann D. HEINZ, Armin RICHTER, Yves Patrick BOTCHAK, Sarah SANZ, Barbara TERHEIDEN, Charlotte WEISS, 2024. Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers. In: Solar RRL. Wiley. 2024, 8(4), 2300882. ISSN 2367-198X. eISSN 2367-198X. Verfügbar unter: doi: 10.1002/solr.202300882
BibTex
@article{Rittmann2024-01-16Towar-69289,
  year={2024},
  doi={10.1002/solr.202300882},
  title={Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers},
  number={4},
  volume={8},
  issn={2367-198X},
  journal={Solar RRL},
  author={Rittmann, Clara and Messmer, Pascal and Niewelt, Tim and Supik, Ella Susann and Heinz, Friedemann D. and Richter, Armin and Botchak, Yves Patrick and Sanz, Sarah and Terheiden, Barbara and Weiss, Charlotte},
  note={Article Number: 2300882}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69289">
    <dc:contributor>Botchak, Yves Patrick</dc:contributor>
    <dc:contributor>Sanz, Sarah</dc:contributor>
    <dc:contributor>Supik, Ella Susann</dc:contributor>
    <dc:contributor>Rittmann, Clara</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T08:57:45Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69289/1/Rittmann_2-8os4nv6zsccr4.pdf"/>
    <dcterms:title>Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers</dcterms:title>
    <dc:creator>Rittmann, Clara</dc:creator>
    <dc:creator>Sanz, Sarah</dc:creator>
    <dc:creator>Terheiden, Barbara</dc:creator>
    <dc:creator>Messmer, Pascal</dc:creator>
    <dc:creator>Weiss, Charlotte</dc:creator>
    <dc:creator>Supik, Ella Susann</dc:creator>
    <dc:creator>Botchak, Yves Patrick</dc:creator>
    <dc:contributor>Weiss, Charlotte</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T08:57:45Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69289"/>
    <dc:language>eng</dc:language>
    <dc:creator>Heinz, Friedemann D.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Heinz, Friedemann D.</dc:contributor>
    <dc:contributor>Niewelt, Tim</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69289/1/Rittmann_2-8os4nv6zsccr4.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Terheiden, Barbara</dc:contributor>
    <dc:contributor>Messmer, Pascal</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Niewelt, Tim</dc:creator>
    <dc:creator>Richter, Armin</dc:creator>
    <dcterms:issued>2024-01-16</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>Conventional silicon (Si) wafers are produced by energy-intensive ingot crystallization which is responsible for a major share of a solar cell's carbon footprint. This work explores Si epitaxially grown silicon wafers (EpiWafers) that are produced by direct epitaxial deposition of trichlorosilane on a reusable substrate. This approach requires less energy and material and hence offers a potential for reduced cost and carbon footprint. Solar cells made from EpiWafers usually suffer from efficiency losses due to recombination at structural crystal defects associated with epitaxial growth. The nature of these defects is investigated and defects at the EpiWafer's back surface are critical. Most of these defects are highly recombination-active, pairwise-connected misfit dislocations in the &lt;110&gt; direction. They originate from a lattice mismatch between the highly doped substrate and the less-doped epitaxially grown layer. In this contribution, the detrimental impact of these defects can be mitigated using typical manufacturing processes of high-efficiency solar cells, such as KOH etching, gettering, and oxidation. Local minority charge carrier lifetimes as high as 2.2 ms after industrially feasible processes are reported. Simulations using efficiency-limiting bulk recombination analysis implies that the material would allow conversion efficiencies of up to 25.6% considering tunnel oxide-passivated contact acting as rear emitter solar cell design.</dcterms:abstract>
    <dc:contributor>Richter, Armin</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen