Publikation: Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Conventional silicon (Si) wafers are produced by energy-intensive ingot crystallization which is responsible for a major share of a solar cell's carbon footprint. This work explores Si epitaxially grown silicon wafers (EpiWafers) that are produced by direct epitaxial deposition of trichlorosilane on a reusable substrate. This approach requires less energy and material and hence offers a potential for reduced cost and carbon footprint. Solar cells made from EpiWafers usually suffer from efficiency losses due to recombination at structural crystal defects associated with epitaxial growth. The nature of these defects is investigated and defects at the EpiWafer's back surface are critical. Most of these defects are highly recombination-active, pairwise-connected misfit dislocations in the <110> direction. They originate from a lattice mismatch between the highly doped substrate and the less-doped epitaxially grown layer. In this contribution, the detrimental impact of these defects can be mitigated using typical manufacturing processes of high-efficiency solar cells, such as KOH etching, gettering, and oxidation. Local minority charge carrier lifetimes as high as 2.2 ms after industrially feasible processes are reported. Simulations using efficiency-limiting bulk recombination analysis implies that the material would allow conversion efficiencies of up to 25.6% considering tunnel oxide-passivated contact acting as rear emitter solar cell design.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RITTMANN, Clara, Pascal MESSMER, Tim NIEWELT, Ella Susann SUPIK, Friedemann D. HEINZ, Armin RICHTER, Yves Patrick BOTCHAK, Sarah SANZ, Barbara TERHEIDEN, Charlotte WEISS, 2024. Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers. In: Solar RRL. Wiley. 2024, 8(4), 2300882. ISSN 2367-198X. eISSN 2367-198X. Verfügbar unter: doi: 10.1002/solr.202300882BibTex
@article{Rittmann2024-01-16Towar-69289, year={2024}, doi={10.1002/solr.202300882}, title={Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers}, number={4}, volume={8}, issn={2367-198X}, journal={Solar RRL}, author={Rittmann, Clara and Messmer, Pascal and Niewelt, Tim and Supik, Ella Susann and Heinz, Friedemann D. and Richter, Armin and Botchak, Yves Patrick and Sanz, Sarah and Terheiden, Barbara and Weiss, Charlotte}, note={Article Number: 2300882} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69289"> <dc:contributor>Botchak, Yves Patrick</dc:contributor> <dc:contributor>Sanz, Sarah</dc:contributor> <dc:contributor>Supik, Ella Susann</dc:contributor> <dc:contributor>Rittmann, Clara</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T08:57:45Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69289/1/Rittmann_2-8os4nv6zsccr4.pdf"/> <dcterms:title>Toward Highly Efficient Low-Carbon Footprint Solar Cells : Impact of High-Temperature Processing on Epitaxially Grown p-Type Silicon Wafers</dcterms:title> <dc:creator>Rittmann, Clara</dc:creator> <dc:creator>Sanz, Sarah</dc:creator> <dc:creator>Terheiden, Barbara</dc:creator> <dc:creator>Messmer, Pascal</dc:creator> <dc:creator>Weiss, Charlotte</dc:creator> <dc:creator>Supik, Ella Susann</dc:creator> <dc:creator>Botchak, Yves Patrick</dc:creator> <dc:contributor>Weiss, Charlotte</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T08:57:45Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69289"/> <dc:language>eng</dc:language> <dc:creator>Heinz, Friedemann D.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Heinz, Friedemann D.</dc:contributor> <dc:contributor>Niewelt, Tim</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69289/1/Rittmann_2-8os4nv6zsccr4.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Terheiden, Barbara</dc:contributor> <dc:contributor>Messmer, Pascal</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Niewelt, Tim</dc:creator> <dc:creator>Richter, Armin</dc:creator> <dcterms:issued>2024-01-16</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract>Conventional silicon (Si) wafers are produced by energy-intensive ingot crystallization which is responsible for a major share of a solar cell's carbon footprint. This work explores Si epitaxially grown silicon wafers (EpiWafers) that are produced by direct epitaxial deposition of trichlorosilane on a reusable substrate. This approach requires less energy and material and hence offers a potential for reduced cost and carbon footprint. Solar cells made from EpiWafers usually suffer from efficiency losses due to recombination at structural crystal defects associated with epitaxial growth. The nature of these defects is investigated and defects at the EpiWafer's back surface are critical. Most of these defects are highly recombination-active, pairwise-connected misfit dislocations in the <110> direction. They originate from a lattice mismatch between the highly doped substrate and the less-doped epitaxially grown layer. In this contribution, the detrimental impact of these defects can be mitigated using typical manufacturing processes of high-efficiency solar cells, such as KOH etching, gettering, and oxidation. Local minority charge carrier lifetimes as high as 2.2 ms after industrially feasible processes are reported. Simulations using efficiency-limiting bulk recombination analysis implies that the material would allow conversion efficiencies of up to 25.6% considering tunnel oxide-passivated contact acting as rear emitter solar cell design.</dcterms:abstract> <dc:contributor>Richter, Armin</dc:contributor> </rdf:Description> </rdf:RDF>