Publikation:

Reservoir Computing : Information Processing of Stationary Signals

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Henriques, Julie
Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings : 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing, 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science ; CSE-EUC-DCABES 2016. Piscataway, NJ: IEEE, 2016, pp. 496-503. ISBN 978-1-5090-3593-9. Available under: doi: 10.1109/CSE-EUC-DCABES.2016.231

Zusammenfassung

This paper extends the notion of information processing capacity for non-independent input signals in the context of reservoir computing (RC). The presence of input autocorrelation makes worthwhile the treatment of forecasting and filtering problems for which we explicitly compute this generalized capacity as a function of the reservoir parameter values using a streamlined model. The reservoir model leading to these developments is used to show that, whenever that approximation is valid, this computational paradigm satisfies the so called separation and fading memory properties that are usually associated with good information processing performances. We show that several standard memory, forecasting, and filtering problems that appear in the parametric stochastic time series context can be readily formulated and tackled via RC which, as we show, significantly outperforms standard techniques in some instances.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

IEEE International Conference on Computational Science and Engineering (CSE 2016), 24. Aug. 2016 - 26. Aug. 2016, Paris, France
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Julie HENRIQUES, Juan-Pablo ORTEGA, 2016. Reservoir Computing : Information Processing of Stationary Signals. IEEE International Conference on Computational Science and Engineering (CSE 2016). Paris, France, 24. Aug. 2016 - 26. Aug. 2016. In: Proceedings : 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing, 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science ; CSE-EUC-DCABES 2016. Piscataway, NJ: IEEE, 2016, pp. 496-503. ISBN 978-1-5090-3593-9. Available under: doi: 10.1109/CSE-EUC-DCABES.2016.231
BibTex
@inproceedings{Grigoryeva2016-08Reser-40644,
  year={2016},
  doi={10.1109/CSE-EUC-DCABES.2016.231},
  title={Reservoir Computing : Information Processing of Stationary Signals},
  isbn={978-1-5090-3593-9},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={Proceedings : 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing, 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science ; CSE-EUC-DCABES 2016},
  pages={496--503},
  author={Grigoryeva, Lyudmila and Henriques, Julie and Ortega, Juan-Pablo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40644">
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dc:creator>Henriques, Julie</dc:creator>
    <dcterms:abstract xml:lang="eng">This paper extends the notion of information processing capacity for non-independent input signals in the context of reservoir computing (RC). The presence of input autocorrelation makes worthwhile the treatment of forecasting and filtering problems for which we explicitly compute this generalized capacity as a function of the reservoir parameter values using a streamlined model. The reservoir model leading to these developments is used to show that, whenever that approximation is valid, this computational paradigm satisfies the so called separation and fading memory properties that are usually associated with good information processing performances. We show that several standard memory, forecasting, and filtering problems that appear in the parametric stochastic time series context can be readily formulated and tackled via RC which, as we show, significantly outperforms standard techniques in some instances.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dcterms:title>Reservoir Computing : Information Processing of Stationary Signals</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40644"/>
    <dcterms:issued>2016-08</dcterms:issued>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-16T13:25:28Z</dcterms:available>
    <dc:contributor>Henriques, Julie</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-16T13:25:28Z</dc:date>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen