Publikation: Reservoir Computing : Information Processing of Stationary Signals
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper extends the notion of information processing capacity for non-independent input signals in the context of reservoir computing (RC). The presence of input autocorrelation makes worthwhile the treatment of forecasting and filtering problems for which we explicitly compute this generalized capacity as a function of the reservoir parameter values using a streamlined model. The reservoir model leading to these developments is used to show that, whenever that approximation is valid, this computational paradigm satisfies the so called separation and fading memory properties that are usually associated with good information processing performances. We show that several standard memory, forecasting, and filtering problems that appear in the parametric stochastic time series context can be readily formulated and tackled via RC which, as we show, significantly outperforms standard techniques in some instances.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRIGORYEVA, Lyudmila, Julie HENRIQUES, Juan-Pablo ORTEGA, 2016. Reservoir Computing : Information Processing of Stationary Signals. IEEE International Conference on Computational Science and Engineering (CSE 2016). Paris, France, 24. Aug. 2016 - 26. Aug. 2016. In: Proceedings : 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing, 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science ; CSE-EUC-DCABES 2016. Piscataway, NJ: IEEE, 2016, pp. 496-503. ISBN 978-1-5090-3593-9. Available under: doi: 10.1109/CSE-EUC-DCABES.2016.231BibTex
@inproceedings{Grigoryeva2016-08Reser-40644, year={2016}, doi={10.1109/CSE-EUC-DCABES.2016.231}, title={Reservoir Computing : Information Processing of Stationary Signals}, isbn={978-1-5090-3593-9}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={Proceedings : 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing, 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science ; CSE-EUC-DCABES 2016}, pages={496--503}, author={Grigoryeva, Lyudmila and Henriques, Julie and Ortega, Juan-Pablo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40644"> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <dc:creator>Henriques, Julie</dc:creator> <dcterms:abstract xml:lang="eng">This paper extends the notion of information processing capacity for non-independent input signals in the context of reservoir computing (RC). The presence of input autocorrelation makes worthwhile the treatment of forecasting and filtering problems for which we explicitly compute this generalized capacity as a function of the reservoir parameter values using a streamlined model. The reservoir model leading to these developments is used to show that, whenever that approximation is valid, this computational paradigm satisfies the so called separation and fading memory properties that are usually associated with good information processing performances. We show that several standard memory, forecasting, and filtering problems that appear in the parametric stochastic time series context can be readily formulated and tackled via RC which, as we show, significantly outperforms standard techniques in some instances.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dcterms:title>Reservoir Computing : Information Processing of Stationary Signals</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40644"/> <dcterms:issued>2016-08</dcterms:issued> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-16T13:25:28Z</dcterms:available> <dc:contributor>Henriques, Julie</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-16T13:25:28Z</dc:date> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>