Publikation: Updating a progic
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper presents a progic, or probabilistic logic, in the sense of Haenni et al. [8]. The progic presented here is based on Bayesianism, as the progic discussed by Williamson [15]. However, the underlying generalised Bayesianism differs from the objective Bayesianism used by Williamson, in the calibration norm, and the liberalisation and interpretation of the reference probability in the norm of equivocation. As a consequence, the updating dynamics of both Bayesianisms differ essentially. Whereas objective Bayesianism is based on a probabilistic re-evaluation, orthodox Bayesianism is based on a probabilistic revision. I formulate a generalised and iterable orthodox Bayesian revision dynamics. This allows to define an updating procedure for the generalised Bayesian progic. The paper compares the generalised Bayesian progic and Williamson's objective Bayesian progic in strength, update dynamics and with respect to language (in)sensitivity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RAIDL, Eric, 2016. Updating a progic. In: Journal of Applied Logic. 2016, 14, pp. 65-94. ISSN 1570-8683. eISSN 1570-8691. Available under: doi: 10.1016/j.jal.2015.09.013BibTex
@article{Raidl2016-03Updat-33505, year={2016}, doi={10.1016/j.jal.2015.09.013}, title={Updating a progic}, volume={14}, issn={1570-8683}, journal={Journal of Applied Logic}, pages={65--94}, author={Raidl, Eric} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33505"> <dc:contributor>Raidl, Eric</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33505"/> <dcterms:title>Updating a progic</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Raidl, Eric</dc:creator> <dcterms:issued>2016-03</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T13:01:18Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T13:01:18Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">This paper presents a progic, or probabilistic logic, in the sense of Haenni et al. [8]. The progic presented here is based on Bayesianism, as the progic discussed by Williamson [15]. However, the underlying generalised Bayesianism differs from the objective Bayesianism used by Williamson, in the calibration norm, and the liberalisation and interpretation of the reference probability in the norm of equivocation. As a consequence, the updating dynamics of both Bayesianisms differ essentially. Whereas objective Bayesianism is based on a probabilistic re-evaluation, orthodox Bayesianism is based on a probabilistic revision. I formulate a generalised and iterable orthodox Bayesian revision dynamics. This allows to define an updating procedure for the generalised Bayesian progic. The paper compares the generalised Bayesian progic and Williamson's objective Bayesian progic in strength, update dynamics and with respect to language (in)sensitivity.</dcterms:abstract> </rdf:Description> </rdf:RDF>