Trajectory-based visual analysis of large financial time series data

Lade...
Vorschaubild
Dateien
Schreck.pdf
Schreck.pdfGröße: 2.84 MBDownloads: 925
Datum
2007
Autor:innen
Tekusova, Tatiana
Kohlhammer, Jörn
Fellner, Dieter
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
ACM SIGKDD Explorations Newsletter. 2007, 9(2), pp. 30-37. Available under: doi: 10.1145/1345448.1345454
Zusammenfassung

Visual Analytics seeks to combine automatic data analysis with visualization and human-computer interaction facilities to solve analysis problems in applications characterized by occurrence of large amounts of complex data. The financial data analysis domain is a promising field for research and application of Visual Analytics technology, as it prototypically involves the analysis of large data volumes in solving complex analysis tasks.
We introduce a Visual Analytics system for supporting the analysis of large amounts of financial time-varying indicator data. A system, driven by the idea of extending standard technical chart analysis from one to two-dimensional indicator space, is developed. The system relies on an unsupervised clustering algorithm combined with an appropriately designed movement data visualization technique. Several analytical views on the full market and specific assets are offered for the user to navigate, to explore, and to analyze. The system includes automatic screening of the potentially large visualization space, preselecting possibly interesting candidate data views for presentation to the user. The system is applied to a large data set of time varying 2-D stock market data, demonstrating its effectiveness for visual analysis of financial data. We expect the proposed techniques to be beneficial in other application areas as well.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual analytics, Trajectory clustering and visualization, Self-Organizing Maps, Financial Data
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHRECK, Tobias, Tatiana TEKUSOVA, Jörn KOHLHAMMER, Dieter FELLNER, 2007. Trajectory-based visual analysis of large financial time series data. In: ACM SIGKDD Explorations Newsletter. 2007, 9(2), pp. 30-37. Available under: doi: 10.1145/1345448.1345454
BibTex
@article{Schreck2007Traje-17305,
  year={2007},
  doi={10.1145/1345448.1345454},
  title={Trajectory-based visual analysis of large financial time series data},
  number={2},
  volume={9},
  journal={ACM SIGKDD Explorations Newsletter},
  pages={30--37},
  author={Schreck, Tobias and Tekusova, Tatiana and Kohlhammer, Jörn and Fellner, Dieter}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17305">
    <dc:creator>Kohlhammer, Jörn</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Tekusova, Tatiana</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17305/2/Schreck.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2007</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Visual Analytics seeks to combine automatic data analysis with visualization and human-computer interaction facilities to solve analysis problems in applications characterized by occurrence of large amounts of complex data. The financial data analysis domain is a promising field for research and application of Visual Analytics technology, as it prototypically involves the analysis of large data volumes in solving complex analysis tasks.&lt;br /&gt;We introduce a Visual Analytics system for supporting the analysis of large amounts of financial time-varying indicator data. A system, driven by the idea of extending standard technical chart analysis from one to two-dimensional indicator space, is developed. The system relies on an unsupervised clustering algorithm combined with an appropriately designed movement data visualization technique. Several analytical views on the full market and specific assets are offered for the user to navigate, to explore, and to analyze. The system includes automatic screening of the potentially large visualization space, preselecting possibly interesting candidate data views for presentation to the user. The system is applied to a large data set of time varying 2-D stock market data, demonstrating its effectiveness for visual analysis of financial data. We expect the proposed techniques to be beneficial in other application areas as well.</dcterms:abstract>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Kohlhammer, Jörn</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:01:39Z</dcterms:available>
    <dc:contributor>Fellner, Dieter</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17305/2/Schreck.pdf"/>
    <dc:creator>Fellner, Dieter</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:01:39Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Tekusova, Tatiana</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17305"/>
    <dcterms:bibliographicCitation>First publ. in: ACM SIGKDD Explorations Newsletter ; 9 (2007), 2. - pp. 30-37</dcterms:bibliographicCitation>
    <dcterms:title>Trajectory-based visual analysis of large financial time series data</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet