Publikation: On the Choi-Lam analogue of Hilbert's 1888 theorem for Symmetric Forms
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Linear Algebra and its Applications. 2016, 496, pp. 114-120. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2016.01.024
Zusammenfassung
A famous theorem of Hilbert from 1888 states that a positive semidefinite (psd) real form is a sum of squares (sos) of real forms if and only if n=2 or d=1 or (n,2d)=(3,4), where n is the number of variables and 2d the degree of the form. In 1976, Choi and Lam proved the analogue of Hilbert's Theorem for symmetric forms by assuming the existence of psd not sos symmetric n-ary quartics for n≥5. In this paper we complete their proof by constructing explicit psd not sos symmetric n-ary quartics for n≥5.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Positive polynomials; Sums of squares; Symmetric forms
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GOEL, Charu, Salma KUHLMANN, Bruce REZNICK, 2016. On the Choi-Lam analogue of Hilbert's 1888 theorem for Symmetric Forms. In: Linear Algebra and its Applications. 2016, 496, pp. 114-120. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2016.01.024BibTex
@article{Goel2016ChoiL-32537, year={2016}, doi={10.1016/j.laa.2016.01.024}, title={On the Choi-Lam analogue of Hilbert's 1888 theorem for Symmetric Forms}, volume={496}, issn={0024-3795}, journal={Linear Algebra and its Applications}, pages={114--120}, author={Goel, Charu and Kuhlmann, Salma and Reznick, Bruce} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32537"> <dc:creator>Goel, Charu</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Reznick, Bruce</dc:contributor> <dcterms:abstract xml:lang="eng">A famous theorem of Hilbert from 1888 states that a positive semidefinite (psd) real form is a sum of squares (sos) of real forms if and only if n=2 or d=1 or (n,2d)=(3,4), where n is the number of variables and 2d the degree of the form. In 1976, Choi and Lam proved the analogue of Hilbert's Theorem for symmetric forms by assuming the existence of psd not sos symmetric n-ary quartics for n≥5. In this paper we complete their proof by constructing explicit psd not sos symmetric n-ary quartics for n≥5.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32537"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Reznick, Bruce</dc:creator> <dcterms:issued>2016</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-19T12:10:33Z</dcterms:available> <dcterms:title>On the Choi-Lam analogue of Hilbert's 1888 theorem for Symmetric Forms</dcterms:title> <dc:creator>Kuhlmann, Salma</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Goel, Charu</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-19T12:10:33Z</dc:date> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja